

Nuclear structure of the semi-magic tin isotopes close to ¹⁰⁰Sn: Lifetime measurements of low-lying states in ¹⁰⁶Sn and ¹⁰⁸Sn

PhD Thesis Award

Marco Siciliano

REDUCED TRANSITION PROBABILITY

Within the shell model framework, the nuclear interaction can be described via multipole expansion:

The balance between the proton-neutron multipole force and the pairing forces determine the nuclear shape and in particular the existence of the **magic numbers**.

Z=50 PHYSICS CASE

- Longest isotopic chain between two experimentally accessible doubly-magic nuclei.
- Unique opportunity for **systematic studies** of the basic nuclear properties.
- Balance between the closed-shell effects and evolving collectivity.

Z=50 PHYSICS CASE Excitation Energy

Z=50 PHYSICS CASE Excitation Energy

Z=50 PHYSICS CASE Reduced Transition Probability

The systematics of the low-lying states excitation energy suggest the **seniority** to be a symmetry of the nuclear Hamiltonian.

Thus, the B(E2; $2_1^+ \rightarrow 0_{q.s.}^+$) should present a parabolic behavior with a maximum in the mid-shell.

For the neutron-deficient nuclei, several experiments have been performed:

- > The 6_1^+ isomers limit the investigation of the electromagnetic properties of the low-lying states.
- Coulomb excitation measurements have been performed with radioactive beams, extracting information only on the 2⁺₁ states

Multi-nucleon transfer reactions represent a possible solution to overcome the experimental limitations:

- Direct population of the states
- Stable beams

EXPERIMENTAL SETUP

MNT reaction to investigate the neutron-deficient Sn isotopes:

- Stable beam with higher intensity than previous experiment with radioactive beams
- > **Direct population** of the excited states allows to study also the 4_1^+ states in 106,108 Sn

EXPERIMENTAL SETUP VAMOS++ Spectrometer

The **VA**riable **MO**de **S**pectrometer is a large acceptance magnetic spectrometer used to fully identify the reaction products, providing the atomic number Z and mass A.

- **Optical elements** focalise (2 magnetic quadrupoles) and bend (1 magnetic dipole) the recoil trajectories according to their A/q.
- The dual position sensitive **Multi-Wire Proportional Counter** gives the recoil entrance velocity $\vec{\beta}$, crucial for the Doppler-correction.
- Together with the MWPC, the **Multi-Wire Parallel Plate Avalanche Counter** measures the time-of-flight.
- The **Drift Chambers** provides the fragments direction at the focal-plane position, allowing the trajectory reconstruction.
- The **lonisation Chamber** measures the reaction products energy loss, providing information about their atomic number (Bethe-Bloch formula).

EXPERIMENTAL SETUP VAMOS++ Spectrometer

The VAMOS++ spectrometer allows the **complete identification** of the reaction products, providing the atomic number Z and mass A.

From the yield of the identified ions, two region were mainly populated:

- Light ions with **Z~28** were populated via the fusion-fission reaction of the beam with the degrader material
- Beam-like ions with Z~48 were obtained via both multi-nucleon transfer reactions and deepinelastic collisions of the beam with the target

EXPERIMENTAL SETUP

MNT reaction to investigate the neutron-deficient Sn isotopes:

- Stable beam with higher intensity than previous experiment with radioactive beams
- > **Direct population** of the excited states allows to study also the 4_1^+ states in 106,108 Sn

EXPERIMENTAL SETUP AGATA Spectrometer

Advance GAmma Tracking Array:

- \rightarrow no anti-Compton shields to increase the active-volume angular coverage and so the <code>efficiency</code>
- \rightarrow segmentation of the germanium crystal to improve the **position sensitivity**
- \rightarrow most advance digital electronics allows high counting rates

Per each detector 38 signals (36 segments + 2 central contact) are collected together with their traces.

RESULTS ¹⁰⁸Sn Lifetimes

The TKEL can be used to **control the direct population** of the excited states and to simplify the decay chain.

Strasbourg, 9th-13th Sept. 2019

RESULTS ¹⁰⁸Sn Lifetimes

The TKEL can be used to **control the direct population** of the excited states and to simplify the decay chain.

RESULTS ¹⁰⁸Sn Lifetimes

The TKEL can be used to **control the direct population** of the excited states and to simplify the decay chain.

τ(2⁺) = 0.69(17) ps A. Banu et al., Phys. Rev. C 72.(2005) 061305

M. Siciliano "Nuclear structure of the semi-magic tin isotopes close to ¹⁰⁰Sn: lifetime measurements of low-lying states in ¹⁰⁶Sn and ¹⁰⁸Sn"

Strasbourg, 9th-13th Sept. 2019

 $2_1^+ \rightarrow 0_{q.s.}^+$ transition.

 $\tau(2_1^+) = 1.2(7) \text{ ps}$ $\tau(4_1^+) = 5.2(39) \text{ ps}$

RESULTS ¹⁰⁶Sn Lifetimes

exotic

RESULTS Reduced Transition Probabilities

THEORETICAL INTERPRETATION Quadrupole-Pairing Interplay

Large-scale shell-model calculation, performed by the Strasbourg group, to explain the systematic of the reduced transition probability in the neutron-deficient Sn isotopes.

M. Siciliano et al., Phys. Rev. Lett. (2019), submitted A.P. Zuker, Phys. Rev. Lett. (2019), accepted

- Realistic potential: N3LO (CD-Bonn and AV18 provide same results)
- Renormalization: 30% for quadrupole force 0-40% for pairing force
- Monopole-free
 ¹⁰¹Sn single-particle spectrum, given by GEMO
- Full gds valence space 2p-2h excitations in the $(g_{_{9/2}})^{\pi}$

THEORETICAL INTERPRETATION Quadrupole-Pairing Interplay

- Realistic potential: N3LO (CD-Bonn and AV18 provide same results)
- Renormalization: 30% for quadrupole force 0-40% for pairing force
- Monopole-free
 ¹⁰¹Sn single-particle spectrum, given by GEMO
- Full gds valence space
 2p-2h excitations in the (g_{9/2})^π

Pairing force takes its revenge on quadrupole correlation

Results in ¹⁰⁸Sn allow to firmly define the pairing force

CONCLUSIONS

- Deep-inelastic collisions are a powerful tool for populating the region close to ¹⁰⁰Sn. Thanks to the direct population of the states, electromagnetic properties of the low-lying states can be investigated.
- For the very first time the lifetime of the 2_1^+ and 4_1^+ states has been measured for ¹⁰⁶⁻¹⁰⁸Sn.
- The extracted B(E2) values have been compared with LSSM calculations to explain the trend of neutrondeficient Sn isotopes.
 - > Despite quadrupole force is reduced to its realistic value, the $B(E2;2_1^+ \rightarrow 0_{g.s.}^+)$ values are not affected by pairing renormalization. Quadrupole correlations dominate.
 - > The $B(E2;4_1^+ \rightarrow 2_1^+)$ values are sensitive to the form of the nuclear interaction. The precise results in ¹⁰⁸Sn allow to firmly define the amount of pairing renormalization

The very precise measurements in ¹⁰⁸Sn have shown to open new perspectives in the understanding of the quadrupole-pairing interplay.

M. Siciliano^{1,2,3}, J.J. Valiente-Dobón¹, A. Goasduff^{1,2,4}, F. Nowacki⁵, A.P. Zuker⁵,
D. Bazzacco⁴, A. Lopez-Martens⁶, E. Clément⁷, G. Benzoni⁸, T. Braunroth⁹, N. Cieplicka-Oryńczak^{8,10}, F.C.L. Crespi^{8,11}, G. de France⁷, M. Doncel¹², S. Ertürk¹³, C. Fransen⁹, A. Gadea¹⁴, G. Georgiev⁶, A. Goldkuhle⁹, U. Jakobsson¹⁵,
G. Jaworski^{1,16}, P.R. John^{2,4,17}, I. Kuti¹⁸, A. Lemasson⁷, H. Li¹⁵, T. Marchi¹, D. Mengoni^{2,4}, C. Michelagnoli^{7,19}, T. Mijatović²⁰,
C. Müller-Gatermann⁹, D.R. Napoli¹, J. Nyberg²¹, M. Palacz¹⁶, R.M. Pérez-Vidal¹⁴, B. Sayği^{1,22}, D. Sohler¹⁸, S. Szilner²⁰,
D. Testov^{2,4}, D. Barrientos²³, B. Birkenbach⁹, H.C. Boston²⁴, A.J. Boston²⁴, B. Cederwall²⁵, D.M. Cullen²⁶, J. Collado²⁷,
P. Désesquelles⁶, J. Dudouet^{6,28}, C. Domingo-Pardo¹⁴, J. Eberth⁹, F.J. Egea-Canet¹, V. González²⁷, D.S. Judson²⁴,
L.J. Harkness-Brennan²⁴, H. Hess⁹, A. Jungclaus²⁹, W. Korten³, M. Labiche³⁰, A. Lefevre⁷, S. Leoni^{8,11}, A. Maj¹⁰,
R. Menegazzo⁴, B. Million⁸, A. Pullia^{8,11}, F. Recchia^{2,4}, P. Reiter⁹, M.D. Salsac³, E. Sanchis²⁷, O. Stezowski²⁸,
Ch. Theisen³, and M. Zielińska³

¹ INFN, Laboratori Nazionali di Legnaro, Italy.

- ² Dipartimento di Fisica e Astronomia, Università di Padova, Italy.
- ³ Irfu/CEA, Université de Paris-Saclay, Gif-sur-Yvette, France.
- ⁴ INFN, Sezione di Padova, Italy.
- ⁵ IPHC, CNRS/IN2P3 Université de Strasbourg, France.
- ⁶ CSNSM, CNRS/IN2P3, Université de Paris-Saclay, Orsay, France.
- ⁷ GANIL, Irfu/CEA/DRF and CNRS/IN2P3, Caen, France.
- ⁸ INFN, Sezione di Milano, Italy.
- ⁹ IKP, Universität zu Köln, Germany.
- ¹⁰ IFJ-PAN, Krakow, Poland.
- ¹¹ Dipartimento di Fisica, Università di Milano, Italy.
- ¹² Universidad de Salamanca, Salamanca, Spain.
- ¹³ Ömer Halisdemir Üniversitesi, Niğde, Turkey.
- ¹⁴ IFIC, CSIC-Universidad de Valencia, Spain.
- ¹⁵ Kungliga Tekniska Högskolan, Stockholm, Sweden.

- ¹⁶ HIL, Univeristy of Warsaw, Poland.
- ¹⁷ IKP, Technische Universität Darmstadt, Darmstadt, Germany.
- ¹⁸ INR, Hungarian Academy of Sciences, Debrecen, Hungary.
- ¹⁹ Institut Laue-Langevin, Grenoble, France.
- ²⁰ Ruder Bošković Institute and University of Zagreb, Croatia.
- ²¹ Institutionen för Fysik och Astronomi, University of Uppsala, Sweden.
- ²² Ege Üniversitesi, İzmir, Turkey.
- ²³ CERN, Geneva, Switzerland.
- ²⁴ Oliver Lodge Laboratory, University of Liverpool, UK.
- ²⁵ Department of Physics, Royal Institute of Technology, Stockholm, Sweden.
- ²⁶ Schuster Laboratory, University of Manchester, UK.
- ²⁷ Departamento de Ingeniería Electrónica, Universitad de Valencia, Spain.
- ²⁸ IPN-Lyon, CNRS/IN2P3, Université de Lyon, Villeurbanne, France.
- ²⁹ Instituto de Estructura de la Materia, CSIC, Madrid, Spain.
- ³⁰ STFC Daresbury Laboratory, Warrington, UK.