<u>Spectroscopy of isotopically identified</u> <u>neutron-rich Pm isotopes</u>

Sarmishtha Bhattacharyya

Variable Energy Cyclotron Centre, Kolkata, India

Points for discussion

- Spin-isospin domain of neutron-rich nuclei
- Deformation in rare earth region
 - Octupole deformation
 - Experimental signatures
- Possibility of parity doublet bands in neutron rich odd-A Pm isotopes
 - Deformed band structures
- High spin states of Pm isotopes as a function of N/Z
 - Experiment at GANIL: EXOGAM and VAMOS++
 - In-beam prompt spectroscopy: Direct identification
 - Experiment at Gammsphere
 - \square ²⁵²Cf fission, high fold γ coincidence
- Band structures in odd-A and odd-odd Pm isotopes Beyond N=90

Neutron Rich - Accessing higher spin and iospin

High Spin in neutron-rich region is a comparatively unexplored area

• Physics to be addressed

- Shape change as a function of spin

Large deformation
 Rotations, pairing, correlations

Experimental challenges:

Limited available reactions

(Deep-inelastic transfer, fission, fast-beams, RIBs)

- Low cross sections
- Complex γ-ray spectrum
- Channels of interest typically
 - ~ a few to tens of mb x-section

S. Bhattacharyya Colloque GANIL, 9-13 September 2019.

Onset of deformation at N ~ 88-90 region

R. F. Casten et al., PRL 47, 1433 (1981)

- N=88-90 transition region
 - > Spherical to quadrupole prolate deformation
- Onset of deformation between N=88 and N=90
- Role of n-p correlation
 - Availability of spin-orbit partner orbits

Octupole Deformations: Reflection Asymmetric Shape

Existence of octupole static/dynamic deformations

Dynamic and static correlations

Experimental signatures:

- ➤ Alternating parity bands of negative- and positive-parity states with sequence $I^+,(I+1)^-,(I+2)^+...$ appear in even-even nuclei
- Parity doublet bands in odd-A and odd-odd nuclei (pair of alternating parity bands)
- Large B(E1) transition probabilities → large intrinsic dipole moments

Probable regions to show octupole effects

Intruder orbitals of opposite parity and ΔJ , $\Delta L = 3$ close to the Fermi level

Spectroscopic fingerprints of Octupole deformation

PRL 57, 3257 (1986)

GANIL

Odd-A Pm (Z=61) isotopes beyond N=82

Odd-A Pm (Z=61) isotopes beyond N=90

S. Bhattacharyya Colloque GANIL, 9-13 September 2019.

Deformation for nuclei around Z ~ 62, N ~90

Reflection symmetric / asymmetric?

l	150Nd	161Nd	152Nd	153Nd	154Nd	155Nd	156NG	157Nd	158Nd
ı	150Nd 0.91E19 Y	181Nd	153Nd	153Nd	154Nd 25.9.5	155Nd 8 0 5	156Nd 5.06 5	157Nd >100 MS	158N4 >168 NS
l	J- 100 00%	B- 100.00%	\$- 100 DOM	\$- 100 00%	9- 100 00%	B- 100.00%	\$- 100 com	g- 100 00%	B: 100.00%
ľ	151 Pts 28.40-H	152Pm 4.12 M	153Pm 5.25 M	154Pm 2.68 M	155Pm 41.6 S	156Pm 26.70 S	157Pm 10.66 S	159Pra -6.8 S	159Pm 1.5 S
2	20/20	J- 100.00%	11.724	3- 100 00%	B- 100 00m	p- 100.00%	p- 100.00%	g- 100.00%	p. 100.00%
	1525m STABLE 26.75%	1535as 48.284 H	154Sm STABLE 12.75%	1558m 22.3 M	1565m 0.4 H	1575m 8:03 M	1585m 5.30 M	1595m 11.37 S	1805m 9.8 S
		F WARE	\$1.100,00%	\$- 100.00m	B- 100.00m	B- 100,00%	\$1.100.00%	g-100.00%	β-100,00%
2	153Eu STABLE 52.10%	154Eu 8.801 V	155884 4 783 Y	15.19°D	1678u 16.16 H	158En. 45.9 M	159Est 18-1 M	160Eu 38 S	

A. V. Afanasjev and I. Ragnarsson PRC 51, 1259 (1995)

Large B(E1) strength in N=92 isotones could also be explained without considering static octupole deformation

Even-A Pm (Z=61) isotopes beyond N=90

- \triangleright Long lived isomers reported from β -decay of Nd isotopes
- > No excited / high spin states known so far above the isomers
- \triangleright Identification / assignment of γ is the main issue
- $\triangleright \gamma \gamma$ coincidence across the long lived isomer is not possible

(8) 13.8 min 150 + X
4- 7.52 min 150.0 (0-1-) 1.73 min X (1+/-)
$$<$$
5 sec 150.3 $>$ 16 μs 121+X
1+ 4.12 min 0.0 (3,4) 2.68 min 0.0 (4+) 5.368 d 0.0 4.8 sec 0.0 158Pm N=91 N=93

Prompt spectroscopy fission fragments Data from two complimentary techniques

GANIL France

Direct identification (Z, A) of fission products

- at the focal plane of magnetic spectrometer: VAMOS++

Prompt gamma transitions in coincidence

- segmented Clover HPGe array : EXOGAM

Selectivity

LBNL USA **High-fold** γ coincidence of fission products

- spontaneous fission of 252Cf: GAMMASPHERE

High fold High statistics

Prompt spectroscopy of (A,Z) identified fragments at GANIL

Large Acceptance Magnetic Spectrometer VAMOS++ @ 20° Segmented Ge Clover Array EXOGAM @ around target

Focal Plane detector active area : $1000 \text{mm} \times 150 \text{mm}$

MWPPAC (20 seg cathode)
Drift Chamber (160 pads of cathode x 2 rows)
Ionization Chamber (5 segments x 3 rows)
Si Wall (20 x 2 rows)

EXOGAM Small MWPPAC VAMOS
6.2 MeV/u
Target: 9Be

Doppler correction for the emitted γ -rays

→ Angle of the fragment and segment of the clover detector

(A,Z) Identification of Fission Fragments

Prompt spectroscopy of fission fragments using high fold γ coincidence at Gammashphere, uSA

Spontaneous fission of ²⁵²Cf

- ✓ High fold- γ coincidence
- ✓ No Doppler correction
- ✓ At least one known g-ray is needed for gating.
- ✓ Cross coincidence with other partner
- ✓ Identification is difficult for extreme neutron-rich

J. H. Hamilton, A. V. Ramayya, E. H. Wang, J. K. Hwang, J. Ranger et al, Vanderbilt University, USA.

(A,Z) gated Doppler corrected singles γ spectra of odd-A Pm

Fragment - γ coincidences
obtained from
VAMOS++ & EXOGAM
from
238U + 9Be-induced fission

N/Z=1.47

N/Z=1.51

N/Z=1.54

N/Z=1.57

N=96

N=94

N=92

N=90

(A,Z) gated Doppler corrected singles γ spectra of even-A Pm

Fragment - γ coincidences obtained from VAMOS++ & EXOGAM from ²³⁸U + ⁹Be-induced fission

All new transitions
Observed for the first time
from the present work

N/Z=1.49 N=91

N/Z=1.52 N=93

N/Z=1.56 N=95

N/Z=1.59 N=97

¹⁵³Pm (N=92)

¹⁵⁵Pm (N=93)

Fragment- γ - γ coincidence from EXOGAM+VAMOS

¹⁵⁷Pm (N=95)

Identified for the first time

γ-γ coincidence from Gammasphere

¹⁵²Pm (N=91)

¹⁵⁴Pm (N=93)

All transitions are identified from the present work for the first time

γ-γ-γ coincidence from Gammasphere

¹⁵⁶Pm (N=95)

No coincidence possible from (A,Z) gated data

(a) γ - γ - γ gate of 236-307-376 keV

 $\gamma-\gamma-\gamma$ coincidence information from ^{252}Cf fission with Gammasphere

Possibility of octupole deformation in Pm isotopes

Pm isotopes →

located at the boundary of octupole deformed lanthanide region

Possible occurrence of reflection asymmetric shapes →

Proton: $d_{5/2}$ and $h_{11/2}$ Neutron: $f_{7/2}$ and $i_{13/2}$

For Z=60, boundary for octupole correlations \rightarrow N=88 / 90

For odd-A and odd-odd nuclei:

Two factors which can stabilize octupole deformation

J. Phys. G: Nucl. Part. Phys 19, L143 (1993).

A. V. Afanasjev,

→ polarization effects of unpaired particles in specific Nilsson orbitals and rotation

¹⁵³Pm: yrast ground-state band: K = 5/2 - (5/2 - [532])

 \rightarrow deformation driving $\pi h_{11/2}$ orbital.

¹⁵¹Pm: yrast ground band is 5/2+ based on 5/2+[413]

K = 5/2 - (5/2 - [532]) is the non-yrast structure

Rotational properties of odd-A Pm isotopes

- □ Slopes of the alignments for the bands in 151 Pm (N = 90) are different compared to all other odd-A Pm isotopes with higher N/Z.
 - □ Nature of the bands in ¹⁵¹Pm is different compared to higher N odd-A Pm
- ☐ Alignments of the bands in ¹⁵⁵⁻¹⁵⁷Pm are similar to the ground band in ¹⁵³Pm.
 - □ [532]5/2-configuration assignment to -ve parity band of ¹⁵³⁻¹⁵⁷Pm
- □ The higher alignment at higher frequency for $^{153-157}$ Pm compared to 151 Pm \Box involvement of high-j $h_{11/2}$ orbital.

Rotational properties of odd-A Pm isotopes

- Negative parity band in ¹⁵¹Pm, corresponding to the [532]5/2-orbital shows pronounced splitting compared to the positive parity band
- ➤ The odd-A Pm isotopes with higher N/Z show increasing signature splitting at higher spins.

The observed band structures of odd-A Pm isotopes do not show any indication of presence of octupole deformation beyond N = 90.

proton quasiparticle Routhian

Proton quasiparticle Routhian for even-even nuclei neighboring ¹⁵⁵Pm

Cranked Relativistic Hartree-Bogoliubov calculations employing two covariant energy density functionals: NL1 and NL3*

- by A. V. Afanasjev

The interaction of hole-type 3/2[514] and particle-type 5/2[532] orbitals leads to substantial signature splitting in Nd (Z=60).

With increasing Fermi surface (going to Sm, Z=62) coupling between the 3/2[541] and 5/2[532] negative parity orbitals is significantly reduced

→ 5/2[532] orbital is signature degenerated at low frequencies but small signature degeneracy develops with increasing frequency.

Similar feature in experimental 5/2[532] bands of 153,155,157Pm

Next step: AGATA - VAMOS++ - EXOGAM

Prompt and delayed spectroscopy of fission fragments with (A,Z) identification

Already done!!

Y. H. Kim et.al, Eur. Phys. J. A, 53, 162 (2017)

High resolution data: AGATA - VAMOS++ - EXOGAM

Summary

- ✓ Deformation in rare earth region beyond N=90
 - Possibility of octupole deformation
 - Alternating parity and parity doublet bands
- ✓ Neutron-rich Pm isotopes till N=97 (N/Z=1.59)
- ✓ Power of combining data from two complimentary techniques
 - ✓ In-beam prompt spectroscopy from fussion-fission (²³⁸U+⁹Be)
 - ✓ Direct (A,Z) identification \rightarrow Selectivity at high N/Z
 - ✓ Spontaneous fission of ²⁵²Cf
 - \checkmark High-fold γ high statistics data \rightarrow Accessing high spins
- ✓ Odd-A Pm → Parity doublet band is not observed for N > 92
- ✓ Odd—odd Pm → First observation of band structures above isomers
- ✓ New data from AGATA EXOGAM VAMOS++ campaign
 - \checkmark prompt-prompt, prompt-delayed spectroscopy with (A,Z) identification

Collaboration

PHYSICAL REVIEW C 98, 044316 (2018)

Deformed band structures in neutron-rich ^{152–158}Pm isotopes

S. Bhattacharyya, ^{1,2,*} E. H. Wang, ³ A. Navin, ⁴ M. Rejmund, ⁴ J. H. Hamilton, ³ A. V. Ramayya, ³ J. K. Hwang, ³ A. Lemasson, ⁴ A. V. Afanasjev, ⁵ Soumik Bhattacharya, ^{1,2} J. Ranger, ³ M. Caamaño, ⁶ E. Clément, ⁴ O. Delaune, ⁴ F. Farget, ⁴ G. de France, ⁴ B. Jacquot, ⁴ Y. X. Luo, ^{3,7} Yu. Ts. Oganessian, ⁸ J. O. Rasmussen, ⁷ G. M. Ter-Akopian, ⁸ and S. J. Zhu⁹

¹Variable Energy Cyclotron Centre, I/AF Bidhannagar, Kolkata 700064, India

²Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai-400094, India

³Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA

⁴GANIL, CEA/DRF-CNRS/IN2P3, Boulevard Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France

⁵Department of Physics and Astronomy, Mississippi State University, Mississippi 39762, USA

⁶USC, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, Spain

⁷Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

⁸Joint Institute for Nuclear Research, RU-141980 Dubna, Russian Federation

⁹Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China

