

Multi-nucleon transfer reactions in Coulomb barrier reactions of the halo nuclei ^{6,8}He

I. Martel^a, N. Keeley^b, K. Rusek^c and K. Kemper^d

- a. University of Huelva, Spain
- b. Heavy Ion Laboratory, Warsaw, Poland
- c. National Centre for Nuclear Research, Otwock, Poland
- d. The Florida State University, Tallahassee, USA

Halo nuclei

Exotic nuclear systems formed by a core and some weakly bound valence nucleons:

- Extended mass distribution and large radius ~ "halo"
- Large reaction cross sections
- Narrow momentum distributions following fast fragmentation reactions

3Li

 $1 \, \mathrm{H}$

• Concentration of dipole strength at low energies close to BU threshold

Searching for di-neutrons and tetra-neutrons

Scattering of ⁸He +²⁰⁸Pb at Coulomb barrier energies

- ⁸He is the most neutron-rich bound nucleus, with a ratio of N/Z = 3 \rightarrow excellent test bench for multi-neutron transfer.
- Spherical, well known double-magic target nucleus ²⁰⁸Pb
- Coulomb barrier \rightarrow large probability of neutron transfer
- Existing 6 He + 208 Pb elastic scattering data at similar incident energies ~ 22 MeV (Coulomb barrier).
- Comparing ⁶He and ⁸He scattering is interesting:
 - → Rms. matter radii of ⁶He and ⁸He are very similar (2.33 fm, 2.49 fm), but they are halo and skin nuclei, respectively
 - \rightarrow Remove "geometrical" effects due to differences in size \rightarrow better understanding of structure/dynamics of the reaction process

	S1n (MeV)	S2n (MeV)	Q1n (MeV)	Q2n (MeV)	SF(1n)	SF(2n)
⁶ He	1.771	0.973	+2.07	+8.15	1.6	1.0
⁸ He	2.140	2.574	+1.35	+6.98	2.9	1.0

N. Keeley et al., PLB 646, 222 (2007).
F. Skaza et al., PRC 73, 044301 (2006).
L.V. Chulkov et al., NPA 759, 43 (2005).

- S_{1n} and S_{2n} : higher in ⁸He \rightarrow smaller coupling to the continuum in ⁸He \sim smaller breakup yield.
- S_{2n} : smaller in ⁶He \rightarrow larger 2n transfer and 2n-breakup
- Q_{1n} and Q_{2n} : 1n and 2n better Q-matched in ⁸He ~ larger 1n and 2n transfer yield.
- SF(1n): higher in 8 He ~ larger 1n-transfer yield.
- SF(2n): Similar values ~ similar yields for 2n transfer.
- 4-neutron transfer. Unique mechanism for ⁸He.

- Relative strength of the neutron transfer modes?
- ✤ Sequential or direct?
- Di-neutrons and tetra-neutrons?

Scattering of ⁸He +²⁰⁸Pb at 16 and 22 MeV

Caen, France

- Proposal E587S (2010)
- Measure the angular distribution of the elastic channel and the yields of ⁶He and ⁴He from 15° to 165° Lab.

BEAM

G. Marquínez-Durán et al. Nucl. Inst. Meth. A 755, 69 (2014).

Particle identification

Elastic cross sections

OM calculations: Vr, Wi Woods-Saxon

Projectile	V	r_V	a_V	W	r_W	a_W	σ_R (mb)
⁸ He	143.7	1.631	0.587	37.1	1.481	1.148	1529
⁶ He	147.4	1.237	0.618	19.8	1.090	1.766	1425

- Larger total reaction cross section for ⁸He than for ⁶He.
 → larger neutron transfer as compared to ⁶He.
- Consistent results of Z. Podolyák, et al., in ⁸He + ²⁰⁸Pb @ 26 MeV
 - → γ decay of low-spin states in ²⁰⁹Pb → suggests strong one-neutron stripping process,
 - → Strength comparable to fusion-evaporation channel ²⁰⁸Pb(⁸He,4n)²¹²Po

Z. Podolyák, et al., Nucl. Instr. Meth. A 511, 354 (2003).

⁴He and ⁶He yields

G. Marquínez-Durán et al., Phys. Rev. C 98, 034615 (2018).

Cross sections

^{6,4}He: The shape of the angular distributions consistent with a transfer reaction mechanism.

⁶He:

• Competition of 1n and 2n transfer ⁴He:

- **Reaction mechanisms** Q (MeV) $Q_{\rm opt}$ (MeV) ⁶He Reaction 2n transfer \rightarrow ²⁰⁸Pb(⁸He, ⁶He)²¹⁰Pb -0.8+7.001n transfer \rightarrow ²⁰⁸Pb(⁸He, ⁷He \rightarrow ⁶He + n)²⁰⁹Pb +1.40-0.42n breakup \rightarrow ²⁰⁸Pb(⁸He, ⁸He^{*} \rightarrow ⁶He + 2n)²⁰⁸Pb -2.14⁴He Reaction Q (MeV) Q_{opt} (MeV) 4n transfer \rightarrow ²⁰⁸Pb(⁸He, ⁴He) ²¹²Pb +14.99-1.73n transfer → 208 Pb(8 He, 5 He → 4 He + n) 211 Pb -1.2+9.12
- $2n \text{ transfer} \rightarrow {}^{208}\text{Pb}({}^{8}\text{He}, {}^{6}\text{He}_{1.8}^{*} \rightarrow {}^{4}\text{He} + 2n)^{210}\text{Pb} + 5.20 -0.8$ $4n \text{ breakup} \rightarrow {}^{208}\text{Pb}({}^{8}\text{He}, {}^{8}\text{He}^{*} \rightarrow {}^{4}\text{He} + 4n)^{208}\text{Pb} -3.11$ $4n \text{ breakup} \rightarrow {}^{208}\text{Pb}({}^{8}\text{He}, {}^{8}\text{He}^{*} \rightarrow ({}^{6}\text{He}_{1.8}^{*} \rightarrow {}^{4}\text{He} + 2n) + 2n)^{208}\text{Pb} -3.94$

• Small spectroscopic factor for the $\langle {}^{8}\text{He} | {}^{6}\text{He} {}^{*}_{1.8} + 2n \rangle$ overlap \rightarrow expected 3n or 4n transfer to ²¹¹Pb and ²¹²Pb, respectively.

Total cross sections

$E_{\rm lab}~({\rm MeV})$	σ _{6He} (mb)	$\sigma_{^{4}\mathrm{He}}$ (mb)	$\sigma_{\rm R}~({\rm mb})$
16	203^{+10}_{-28}	26 ± 5	254 ± 60
22	871 ± 31	393^{+10}_{-33}	1529 ± 40

Assume: $\sigma_{\text{Trans}} = \sigma_{6\text{He}} + \sigma_{4\text{He}}$ $\sigma_{Fus} = \sigma_R - \sigma_{Trans}$

Good overall agreement between ${}^{8}\text{He} + {}^{208}\text{Pb}$ and ${}^{8}\text{He} + {}^{197}\text{Au}$.

- A. Lemasson, et al., Phys. Lett. B 697, 454 (2011).
- A. Lemasson, et al., Phys. Rev. Lett. 103, 232701 (2009)
- G. Marquínez-Durán et al., Phys. Rev. C 98, 034615 (2018).

 \rightarrow Scattering of ⁸He + ²⁰⁸Pb dominated by transfer channels

Probing transfer of neutron clusters with Coulomb barrier reactions induced by ⁸He

Objective. Measurement of the angular distributions of transfer cross sections for ⁶He and ⁴He yields in coincidence with neutrons and gammas, in the scattering of ⁸He+²⁰⁸Pb at the energy of 22 MeV.

I. Martel^{1,2}, N. Keeley³, K. Kemper⁴, K. Rusek⁵, L. Acosta⁶, L. Aguado², L. Barrón⁶, J. Carpio², E. Chávez⁶, A. Chbihi⁷, C. García-Ramos², G. de Angelis⁸, G. de France⁷, N. Erduran⁹, A. Gadea¹⁰, A. Goasduff⁸, J.A. Gómez-Galán², A. Gottardo⁸, A. Illana⁸, G. Jaworski⁴, T. Kurtukian-Nieto¹¹, K. Mahata¹², F. Manchado de Sola², D. Marín-Lambarri⁶, F.M. Marqués¹³, M. Mazzocco¹⁴, D. Mengoni⁸, J. Nyberg¹⁵, A.K. Orduz⁷, M. Palacz⁴, S. Pandit¹², V. Parkar¹², M. Pedro-Carrasco², Z. Poldoyak¹⁶, R. Raabe¹⁷, M. Renaud¹⁷, A.M. Rodríguez-Pérez², F. Salguero², A.M. Sánchez-Benítez¹⁹, M. Sánchez-Raya², J. Sánchez-Segovia², A. Shrivastava¹², N. Soic²⁰, D. Testov⁸, J. Smallcombe¹, J.J. Valiente-Dobón⁸, R. Wolski¹⁸.

- 1) Department of Physics, University of Liverpool, Liverpool L69 9ZE, UK.
- 2) Science and Technology Research Centre, University of Huelva, 21071 Huelva, Spain.
- 3) National Centre for Nuclear Research, ul. Andrzeja Sołtana 7, 05-400 Otwock, Poland.
- 4) Department of Physics, The Florida State University, Tallahassee, Florida 32306, USA.
- 5) Heavy Ion Laboratory, University of Warsaw, Pasteura 5a, 02-093 Warsaw, Poland.
- 6) Instituto de Física, UNAM, Ciudad de México, México.
- 7) Grand Accélérateur National d'Ions Lourds. BP 55027 14076 CAEN, Cedex 05, France.
- 8) Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro, Italy.
- 9) Istanbul Sabahattin Zaim University, Halkali, Istanbul, Turkey
- 10) Instituto de Física Corpuscular, CSIC-Universitat de Valencia, Valencia E-46980, Spain
- 11) Centre Etudes Nucléaires de Bordeaux Gradignan, Chemin du Solarium, Gradignan F-33175, France.
- 12) Bhabha Atomic Research Centre, Mumbai 400085 India.
- 13) Laboratoire de Physique Corpusculaire, IN2P3-CNRS, F-14050 Caen cedex, France.
- 14) University of Padova and INFN-Padova, Italy.
- 15) Department of Physics and Astronomy, Uppsala University, SE-75121 Uppsala, Sweden
- 16) Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom.
- 17) Instituut voor Kern- en Stralingsfysica, B-3001 Heverlee, Belgium.
- 19) Dept. of Integrated Sciences, Faculty of Experimental Sciences, University of Huelva, 21071 Huelva, Spain
- 18) Henryk Niewodniczanski Institute of Nuclear Physics PAS, Cracow.
- 19) Rudjer Boskovic Institute, Bijenicka cesta 54, HR-10000 Zagreb, Croatia.

Summary and conclusions

- Sequential 1n-transfer to low-energy levels in ²⁰⁹Pb seems to dominate the ⁶He angular dsitribution.
- The data on ⁴He is well reproduced by including a direct tetraneutron transfer component to highly excited states in ²¹²Pb.
- However, model uncertainties are too large to withdraw conclusive results.
- New proposal at SPIRAL1/GANIL to measure ^{6,4}He exclusive data in coincidence with gammas an neutrons.
- Everybody welcome to join the new proposal, just send me an email to <u>imartel@uhu.es</u>

Thanks!!

Fig. 2. The effect of using lead shielding on the beam tube. (a) γ -ray spectrum without Pb shielding, (b) with Pb shielding, (c) the difference spectrum of spectra (a) and (b). The (a) and (b) spectra are normalised to the 1461 keV intensity. The beam intensity was $\approx 4 \times 10^4$ ions/s. The setup with the position and thickness of the Pb shielding is also shown.

357

Fig. 1. Singles γ -ray (a) and $\gamma - \gamma$ coincidence matrix projection, (b) spectra from the ⁸He + ²⁰⁸Pb reaction (see text for details).