

Study of ³⁶Ca: broken mirror and two proton decay

Louis Lalanne Supervised by O. Sorlin and M. Assié / F. Hammache

Colloque GANIL Strasbourg, France 10/09/2019

Introduction

.

•

Z=20	³⁴ Ca	³⁵ Ca	³⁶ Ca	³⁷ Ca	³⁸ Ca	³⁹ Ca	40Ca stable
Proton-Drip Line	³³ K unbound	³⁴ K unbound	³⁵ K	³⁶ K	³⁷ K	³⁸ K	³⁹ K stable
	³² Ar	³³ Ar	³⁴ Ar	³⁵ Ar	³⁶ Ar stable	³⁷ Ar	³⁸ Ar stable
	N=14		N=16			³⁶ Cl	37Cl stable
<u>General context:</u> Study nuclear structure at the non- binding limit of the nucleus in proton rich region							36S stable
³⁵ Ca: last bound Ca isotope							³⁵ P

- Only g.s. of ^{35,36}Ca are bound
- g.s and 2+ states of ³⁶Ca are known

N=20

Shell Structure and Isospin Symmetry Breaking

- The shell structure and shell gap evolution is studied by spectroscopy
- Comparing it to its mirror nuclei one can study isospin symmetry breacking **MIRROR**

Shell Structure and Isospin Symmetry Breaking

- Mirror symmetry implies that spectra between mirror nuclei are identical
- Isospin symmetry breaking is observed far from the stability

Shell Structure and Isospin Symmetry Breaking

- Mirror symmetry implies that spectra between mirror nuclei are identical
- Isospin symmetry breaking is observed far from the stability

One Proton Decay and X-Ray Burst

6

Two Proton Decay

- Two 2p decay channels: direct or sequential
- Only three direct 2p emitter known
- By studying protons correlation we will determine if the 2p decay is direct or sequential and probe proton interaction inside the nuclei.

Production of ³⁶Ca

• Use of a ³⁷Ca and ³⁸Ca at the LISE spectrometer

- → Produced by fragmentation of 40 Ca at 2µA on a 9 Be target
- → ³⁷Ca beam @ 50MeV/A I = 10^3 pps
- → ³⁸Ca beam @ 50MeV/A I = 10^4 pps

Production of ³⁶Ca

- Use of a ³⁷Ca and ³⁸Ca at the LISE spectrometer
- Produce ³⁶Ca with (p,d) and (p,t) using a proton target

Production of ³⁶Ca

- Use of a ³⁷Ca and ³⁸Ca at the LISE spectrometer
- Produce ³⁶Ca with (p,d) and (p,t) using a proton target
- 37 Ca beam at few 10^3 pps for 6 days

 \rightarrow few thousands of ³⁶Ca

➔ need a thick cryogenic target of liquid Hydrogen

- RIKEN target: CRYPTA
- H. Ryuto *et al.*, <u>Nucl. Instrum. Methods Phys.</u> <u>Res., Sect A 590, 204 (2008).</u>
- Density: 75mg/cm³
- Thickness: 1.5mm

Experimental Setup: CATS

Experimental Setup: 0° Detection

Experimental Setup: MUST2

Energy Calibration of MUST2

Calibration curve for one pixel

1) The calibration depend on the type of particles.

2) From ΔE in the DSSD the particle energy is reconstructed:

$$E_{i,th} = f(\Delta E_{DSSD}, \theta) \rightarrow E_{CSI,th}$$

3)The crystal inhomogeneity modifies the effective gain as a function of the position inside the crystal. To correct this effect, each CsI is segmented in 64 pixels.

Reference Reactions

Absolute Calibration

Preliminary Results: ³⁷Ca(p,d)³⁶Ca

- → Good reconstruction of known states
- → Mass measurement with 40keV of precision in agreement with previous measurement

→ Sign for a 0^+_2 at 2.4MeV. To be confirm by the (p,t) channel.

 ${}^{36}_{20}Ca_{16} \stackrel{0^+}{\bigsqcup} {}^{2^+}_{3.0 \text{ MeV}}$

E*

Preliminary Results: ³⁷Ca(p,d)³⁶Ca

- → Good reconstruction of known states
- → Mass measurement with 40keV of precision in agreement with previous measurement
- → Sign for a 0^+_2 at 2.4MeV. To be confirm by the (p,t) channel.

- → 2+ state decay by both γ and 1p. The ${}^{35}K(p, γ){}^{36}Ca$ reaction rate can be constrained.
- \rightarrow New 1+ state at 4.3 MeV

 \rightarrow New 3+ 4+ doublet at 7.7MeV

Preliminary Results: ³⁷Ca(p,d)³⁶Ca

Perspective

- Study of the angular correlation of the two protons from the decay
- Angular distribution and shell model prediction to confirm the spin of the new state
- Same analysis will be performed on the ³⁸Ca(p,t)³⁶Ca channel
- Mass measurement and spectroscopy of ³⁵Ca with ³⁷Ca(p,t)³⁵Ca reaction
- Study of ${}^{36}Ca \rightarrow {}^{33}Cl + 3p$ and ${}^{36}Ca \rightarrow {}^{32}S + 4p$

