

UNAEN DRIVERSITÉ CAEN NORMANDI

Search for CP violation in nuclear beta decays: the MORA project

E. Liénard for the MORA collaboration

LPC Caen, University of Caen Normandy

Search for CP violation in nuclear β decay: How?

M. Gonzales-Alonso "Fundamental interaction studies with nuclear beta decay", Monday Sept 09 2019

- Nuclear β decay: sensitive tool to test SM complementary to HE physics
- @ low energy, "traces" of New Physics (NP) are hidden in correlations:

Search for CP violation in nuclear β decay: How?

• Correlations between momenta and spin

 $D\frac{\vec{J}.(\vec{p}_e \times \vec{p}_\nu)}{J(E_e E_\nu)}$

P conserving sign changes under T

$$D = \frac{2\rho \ \frac{C_V}{C_A} \delta_{JJ'} (\frac{J}{J+1})^{\frac{1}{2}} \ Im({}^{C_A}/{C_V})}{(1+\rho^2)}$$

D can be $\neq 0$ <u>ONLY IF</u> $\rho \neq 0$ & $\rho \neq \infty$

Measurement of $D \neq 0$ (search for CP violation) has sense only in mirror decays !

	X	n	¹⁹ Ne	²³ Mg	³⁹ Ca
$D = F(X) Im({}^{\circ A}/C_V)$	F(X)	0.3413 (8)	-0.4078 (7)	-0.5142 (10)	0.5563 (16)

Sensitivity to "New Physics" depends on ρ and J

Colloque GANIL

Sept 9-13 2019

Search for CP violation in nuclear β decay: Why?

- Current situation
 - CP violation observed in the K, B, D° meson decays is not enough to account for the large matter – antimatter asymmetry
 - T-odd correlations in beta decay (D and R) and n-EDM searches are sensitive to larger CP violations by 5 to 10 orders of magnitude
 - Current best results in nuclear decays:

¹⁹Ne decay $\rightarrow D = (1 \pm 6) \ 10^{-4}$ Calaprice et al. Hyp. Int.22 (1985) n decay $\rightarrow D = (-0.9 \pm 2.1) \ 10^{-4}$ Mumm et al. PRL107 (2011) Chupp et al. PRC86 (2012)

- Final precision of 2×10^{-5} on *D* A. Falkowski, LPT Orsay, private communication \rightarrow probing a new particle of ~ 500 TeV: out of reach of colliders !!
- n-EDM measurement seems to have a higher sensitivity....
 - \rightarrow not for all possible extensions of SM (LQ models)
 - \rightarrow interpretation less direct González-Alonso et al. PPNP104 (2019)

but

Enough room for high precision measurements of D in nuclear β decays

Search for CP violation in nuclear β decay: the MORA project

Colloque GANIL

Sept 9-13 2019

5

²³Mg⁺: the first candidate for MORA

11.317 s

 $Q_{=0} = 4056.8$

4.4

3.7

3/21

2390.732 0.0069% 5.0

- The pros ...
- Gain in sensitivity in NP of a factor 1.5 vs n decay
- Production rates
 - \checkmark > 10⁵ pps @ JYFL, measured in Oct 2018
 - \checkmark > 10⁸ pps expected at DESIR/GANIL
- Adapted lasers @ JYFL
 - ✓ Ti-Sa laser pulsed @ 10kHz
- $\frac{1.11 \text{ ps} \frac{5/2^+}{3/2^+} + \frac{5^{\vee}}{10} + \frac{439.991}{91.8\%}}{\frac{23}{11}\text{ Na}}$ @ 10 kHz

550 fs 1/2+

✓ 20 µJ / pulse → ~ 99% polarization degree expected in 1 ms (velocity of trapped ions included in simulations) R. de Groote, X. Fléchard and W. Gins

Optical pumping

- Nuclear spin J interacts with atomic one I \rightarrow F=I+J
- σ + or σ light (scan of hyperfine structure) forces ions in the m_F=±F state

Neyens et al. PRL94 (2005) Yordanov et al. PRL108 (2012)

L1+L2 lasers excited using a broadband pulsed Ti:Sa laser (tripled frequency $\rightarrow \lambda \sim 280$ nm) σ + polarization

Colloque GANIL

Sept 9-13 2019

²³Mg⁺: the first candidate for MORA

... and cons

Solution

- Production rates & contamination $> 10^5$ pps @ JYFL, measured in Oct 2018 with > 200 x more stable $^{23}Na^{1+}$
- T_{1/2} ~ 11 s

LPCTrap: capacity ~ 10⁵ ions/bunch ion lifetime ~ 0.5 s Delahaye et al. EPJA55 (2019)

Dedicated new sextupole downstream the gas cell Use of MR-ToF-MS

2)

- 1) Optimization of the new trap design:
- \checkmark reduction of harmonics of order higher than 2
- ✓ increase of detection solid angle

We can expect.	capacity > 10 ⁶ ions/bunch
	ion lifetime > 1 s

Benali et al. to be published

²³Mg⁺: the first candidate for MORA

• ... and cons

Solution

The Phoswich detector for β particles

- Specific design
- Fast response
- β/γ discrimination

Combination of 2 plastic scintillators: ΔE : thin (0.5 mm) & fast ($\tau = 1.8 \text{ ns}$) $\rightarrow "Q_fast"$ E: thick (5 cm) & slow ($\tau = 285 \text{ ns}$) $\rightarrow "Q_slow"$

• ²⁰⁷Bi: a rich decay scheme

Various IC electrons \rightarrow weighted means: 481.7 keV (1.5%), 556.9 keV (0.6%), 994.6 keV (9.4%) Some γ rays: 570 keV (97.76%), 1063 keV (74.5%), 1770 keV (6.87%)

After data corrections, $E = a Q_{tot}^{c} + b$

 Opportunity to measure response functions, from 0.2 MeV up to 3.5 MeV @ATRON (Cherbourg)

GEANT4 simulations just started

First measurement: the Polarization degree

Asymmetry in counting rates depends on the cloud polarization degree *P*

 $\frac{N^+ - N^-}{N^+ + N^-} \propto DP$

P must be 1 measured 2 controlled during the experiment $\rightarrow A_{\beta}$ measurement (*CS Wu -like experiment*)

Silicon detector

8 channels: 4 sectors, 2 rings

 $\frac{N_{\beta^+}^{\uparrow} - N_{\beta^+}^{\downarrow}}{N_{\beta^+}^{\uparrow} + N_{\beta^+}^{\downarrow}} \propto A_{\beta} \cdot P \qquad A_{\beta} \frac{\langle \vec{J} \rangle}{J} \cdot \frac{\vec{p_e}}{E_e}$

First measurement: the Polarization degree

Asymmetry in counting rates depends on the cloud polarization degree *P*

 $\frac{N^+ - N^-}{N^+ + N^-} \propto DP$

P must be 1 measured 2 controlled during the experiment $\rightarrow A_{\beta}$ measurement (*CS Wu -like experiment*)

Silicon detector

8 channels: 4 sectors, 2 rings

 $\frac{N_{\beta^+}^{\uparrow} - N_{\beta^+}^{\downarrow}}{N_{\beta^+}^{\uparrow} + N_{\beta^+}^{\downarrow}} \propto A_{\beta} \cdot P$

$$A_{\beta} \frac{\langle \vec{J} \rangle}{I} \cdot \frac{\overline{p_{d}}}{E}$$

- A_{SM} = −0.5584(17) Severijns et al. PRC78 (2008)
- Precise knowledge not needed for *D* if *P* > 80%

MORA @ JYFL

MORA: status

- Injection line & main chamber
 ✓ design almost completed
- Main chamber
 ✓ built
- Detection
 - ✓ phoswich: tests & simulations
 ✓ RIDE Si: design completed
- Slow control
 ✓ just started

Main chamber

Colloque GANIL

Sept 9-13 2019

E. Liénard

MORA: status

- Injection line & main chamber
 ✓ design almost completed
- Main chamber
 ✓ built
- Detection
 - ✓ phoswich: tests & simulations
 ✓ RIDE Si: design completed
- Slow control
 ✓ just started

<u>Schedule</u>

- Setup built in spring-summer 2020
- Installed @JYFL by end 2020
- First measurements in 2021:
 - 1. A_{β} for P determination
 - 2. D with limited stat

MORA: perspectives

		Trapped ions/cycle	Data taking (days)	Num. of events (<i>P</i>)	σ _P (%)	Num. of coinc. (<i>D</i>)	Sensitivity on <i>D</i>	
from 2021	JYFL: P	2.0×10 ⁴	8	1.7×10 ⁵	1.9	1.5×10 ⁶	1.0×10 ⁻³	
	JYFL: D	2.0×10 ⁴	32	6.7×10 ⁵	0.94	6.1×10 ⁶	5.2×10 ⁻⁴	V
from 2025?	DESIR: D	1.0×10 ⁶	24	2.5×10 ⁷	0.15	2.3×10 ⁸	8.5×10 ⁻⁵	V
	DESIR: D	5.0×10 ⁶	24	1.3×10 ⁸	0.07	1.2×10 ⁹	3.8×10 ⁻⁵	

with optimal trapping

best precision in nuclear beta decay (i.e. compared to ¹⁹Ne) \checkmark

best precision (i.e. compared to n) – constraint on D_{FSI} (~1.2×10⁻⁴)? \checkmark $(DESIR/SPIRAL1: I(^{23}Mg) > 10^8 pps)$

Next candidate: ³⁹Ca ? \rightarrow better sensitivity to NP ($D_{FSI} \sim -3 \times 10^{-5}$) \rightarrow production? perspectives @S³ (> 10⁶pps?) ...

MORA is funded by State & A

Sept 9-13 2019

E. Liénard

NR

Thank you for your attention

E. Liénard Y. Merrer M. Benali X. Fléchard G. Quéméner

P. DelahayeB.M. RetailleauP. UjicF. De OliveiraN. LecesneR. Leroy

I. Moore T. Eronen R.P. De Groote A. De Roubin A. Jokinen A. Kankainen

N. Severijns W. Gins

A. Falkowski

M. Gonzales-Alonso

M. Kowalska G. Neyens

The University of Manchester

M.L. Bissel