

Probing nuclear dynamics and thermodynamics: the INDRA-FAZIA coupling in GANIL.

Diego Gruyer¹, R. Bougault¹, N. Le Neindre¹, O. Lopez¹, L. Manduci¹, M. Parlog¹, J. Quicray¹, E. Vient¹, A. Chbihi², J.D. Frankland², M. Henri², L. Morelli², E. Bonnet³, B. Borderie⁴, E. Galichet⁴, P. Napolitani⁴, S. Barlini⁵, M. Bini⁵, A. Camaiani⁵, G. Casini⁵, P. Ottanelli⁵, G. Pasqualli⁵, S. Piantelli⁵, G. Poggi⁵, S. Valdré⁵, I. Lombardo⁶, G. Verde⁶, R. Alba⁷, C. Maiolino⁷, D. Santonocito⁷, M. Vigilante⁸, M. La Commara⁸, F. Gramegna⁹, M. Cicerchia⁹, G. Mantovani⁹, T. Marchi⁹, M. Cinausero¹⁰, D. Fabris¹⁰, M. Bruno¹¹, T. Kozick¹², S. Upadhyaya¹², A. Kordyasz¹³, A.A. Benitez¹⁴, F.P. Bernal¹⁴, J. Duenas¹⁴, J.E. Garcia Ramos¹⁴

¹LPC Caen, France. ²GANIL, France. ³Subatech Nantes, France. ⁴IPN Orsay, France. ⁵Univ./INFN Florence, Italy. ⁶INFN Sezione di Catania, Italy. ⁷INFN LNS Catania, Italy. ⁸INFN/University Naples, Italy. ⁹INFN LNL Legnaro, Italy. ¹⁰INFN/University Padova, Italy. ¹¹INFN / University Bologna, Italy. ¹²Jagellionian University, Cracow, Poland. ¹³University Varsaw, Poland. ¹⁴University of Huelva, Spain.

(INDRA and FAZIA Collaborations)

First diffusion plot with INDRA-FAZIA at GANIL

First diffusion plot with INDRA-FAZIA at GANIL

First diffusion plot with INDRA-FAZIA at GANIL

N/Z equilibration

Little equilibration at high impact parameter Partial equilibration at low impact parameter

Data-model comparaison

Equilibration rate can constrain the nuclear equation of state

The nuclear Equation of State (EoS)

Dense matter

Describes how the pressure of an infinite system made of protons and neutrons evolves with density and temperature :

 $P(\rho,T)$

Energy functionnal

Evolution of the energy per nucleon as a function of neutron and proton density :

 $e(\rho_n,\rho_p,T)$

The EoS can be deduced from the energy functionnal if the isospin content of the system is known. Fundamental ingredient : in-medium nucleon interaction.

Margueron PRC 97 (2018) 025805

EoS and neutron star structure

Margueron PRC **97** (2018) 025805 Margueron PRC **97** (2018) 025806

EoS and neutron star structure

Margueron PRC **97** (2018) 025805 Margueron PRC **97** (2018) 025806

EoS and nuclear dynamics

Margueron PRC **97** (2018) 025805 Tsang, PRL 92 (2004) 062701

EoS and nuclear dynamics

Margueron PRC **97** (2018) 025805 Tsang, PRL 92 (2004) 062701 Constraining the empirical parameters: jumping across the scales!

How to quantify the EoS ? What do we know about it ?

Isoscalar and isovertor part

The energy functional can be expanded in power of $\delta = (\rho_n - \rho_p)/\rho$ around symmetric nuclear matter ($\delta = 0$):

 $e(\rho, \delta) = e_{is}(\rho) + e_{iv}(\rho)\delta^2 + O(\delta^3)$

Empirical parameters

Both terms of the EoS is then Taylor expanded in power of $x = (\rho - \rho_0)/3\rho_0$ around saturation density $(\rho = \rho_0)$:

$$e_{is}(x) = E_{sat} + \frac{1}{2} K_{sat} x^{2} + O(x^{3})$$
$$e_{iv}(x) = E_{sym} + L_{sym} x + \frac{1}{2} K_{sym} x^{2} + O(x^{3})$$

How to quantify the EoS ? What do we know about it ?

Isoscalar and isovertor part

The energy functional can be expanded in power of $\delta = (\rho_n - \rho_p)/\rho$ around symmetric nuclear matter ($\delta = 0$):

$$e(\rho, \delta) = e_{is}(\rho) + e_{iv}(\rho)\delta^2 + O(\delta^3)$$

Empirical parameters

Both terms of the EoS is then Taylor expanded in power of $x = (\rho - \rho_0)/3\rho_0$ around saturation density $(\rho = \rho_0)$:

$$e_{is}(x) = E_{sat} + \frac{1}{2} K_{sat} x^{2} + O(x^{3})$$
$$e_{iv}(x) = E_{sym} + L_{sym} x + \frac{1}{2} K_{sym} x^{2} + O(x^{3})$$

Margueron PRC 97 (2018) 025805

	~1%	~10%		<u>~30%</u>				???					
Ρα	<i>E_{sat}</i> MeV	E _{sym} MeV	$\begin{array}{c} \rho_{o} \\ \mathrm{fm}^{-3} \end{array}$	L _{sym} MeV	K _{sat} MeV		K _{sym} MeV	Q _{sat} MeV	Q _{sym} MeV	Z _{sat} MeV	Z _{sym} MeV		
$\langle P_{\alpha} \rangle$	-15.8	32	0.155	60	230	T	-100	300	0	-500	-500		
$\sigma_{P_{lpha}}$	± 0.3	± 2	± 0.005	± 15	±20		± 100	± 400	± 400	± 1000	± 1000		

E789 : Isospin transport and the density dependence of the symmetry energy

Isospin transport

Measure the degree of N/Z equilibration as a function of the impact parameter in ^{58,64}Ni+^{58,64}Ni collisions at 32 and 52MeV/A.

Simulations

Antisymmetrized Molecular Dynamics Statistical decay with GEMINI INDRA-FAZIA realistic responce Equilibration rate depends on L_{sym}

Experimental setup

INDRA-FAZIA coupling in D5 FAZIA : quasi-projectile Z and A INDRA : almost full angular coverage

Lopez and Piantelli, E789 proposal

INDRA-FAZIA coupling in GANIL (D5)

INDRA (1993) 240 modules (θ from 14° to 178°) Si-CsI(Tl) telescopes ($\theta < 45^{\circ}$) Single CsI(Tl) ($\theta > 45^{\circ}$) No gaz \rightarrow no ionization chamber

Performances

Z-identification up to Z=92 A-identification up to Z=8 ($\theta < 45^{\circ}$) A-identification up to Z=5 ($\theta > 45^{\circ}$)

INDRA-FAZIA coupling in GANIL (D5)

INDRA (1993)

240 modules (θ from 14° to 178°) Si-CsI(TI) telescopes ($\theta < 45^{\circ}$) Single CsI(TI) ($\theta > 45^{\circ}$) No gaz \rightarrow no ionization chamber **FAZIA (2015)** 12 Blocks : 192 modules (θ from 1.5° to 13°) Si-Si-CsI(Tl) telescopes

Identification methods

 Δ E-E, PSA in Si, PSA in CsI(Tl)

Performances

Z-identification up to Z=92 A-identification up to Z~20-25

beam NDRA

Performances

Z-identification up to Z=92 A-identification up to Z=8 ($\theta < 45^{\circ}$) A-identification up to Z=5 ($\theta > 45^{\circ}$)

INDRA-FAZIA mounting in GANIL (D5)

Acquisition coupling and event merging

Trigger settings

Acquisition coupling

Each detector has its own acquisition system. To build a physical event we need an universal clock \rightarrow CENTRUM

Event merging

If $t_{indra} - t_{fazia}$ inside the coincidence window, the two events are merged online

Free wheeling mode

No coincidence requested, both detectors can be acquired alone

Physics mode

INDRA needs FAZIA in coincidence FAZIA can be acquired alone only if INDRA is not in veto

Overview of the data

Statistics

⁵⁸Ni+⁵⁸Ni at 32 MeV/A ~30 10⁶ events ⁵⁸Ni+⁶⁴Ni at 32 MeV/A ~30 10⁶ events ⁶⁴Ni+⁵⁸Ni at 32 MeV/A ~30 10⁶ events ⁶⁴Ni+⁶⁴Ni at 32 MeV/A ~30 10⁶ events ⁵⁸Ni+⁵⁸Ni at 52 MeV/A ~30 10⁶ events ⁵⁸Ni+⁶⁴Ni at 52 MeV/A ~30 10⁶ events ⁶⁴Ni+⁵⁸Ni at 52 MeV/A ~30 10⁶ events ⁶⁴Ni+⁵⁸Ni at 52 MeV/A ~30 10⁶ events ⁶⁴Ni+⁶⁴Ni at 52 MeV/A ~30 10⁶ events

Data reduction

Full identification in INDRA Full identification of particle stopped in the 2nd Si and in CsI(TI) PSA identification in 1st Si and detector calibration to be completed

Overview of the data

Statistics

⁵⁸Ni+⁵⁸Ni at 32 MeV/A ~30 10⁶ events ⁵⁸Ni+⁶⁴Ni at 32 MeV/A ~30 10⁶ events ⁶⁴Ni+⁵⁸Ni at 32 MeV/A ~30 10⁶ events ⁶⁴Ni+⁶⁴Ni at 32 MeV/A ~30 10⁶ events ⁵⁸Ni+⁵⁸Ni at 52 MeV/A ~30 10⁶ events ⁵⁸Ni+⁶⁴Ni at 52 MeV/A ~30 10⁶ events ⁶⁴Ni+⁵⁸Ni at 52 MeV/A ~30 10⁶ events ⁶⁴Ni+⁵⁸Ni at 52 MeV/A ~30 10⁶ events ⁶⁴Ni+⁶⁴Ni at 52 MeV/A ~30 10⁶ events

Data reduction

Full identification in INDRA Full identification of particle stopped in the 2nd Si and in CsI(TI) PSA identification in 1st Si and detector calibration to be completed

Preliminary results

The fragment size decreases with increasing violence of the collision...

Preliminary results on isospin equilibration

Y-axis

N/Z equilibration ratio measured with FAZIA $R_i = (2X_i - X_1 - X_2)/(X_1 - X_2)$, with $X_i = (N_{PLF}/Z_{PLF})_i$ $R_i = +1$ (-1) : no N/Z equilibration $R_i = 0$: full N/Z equilibration

X-axis

Number of fragments detected in INDRA and FAZIA. Can be linked to the impact parameter without model assumption (J. Frankland)

Preliminary results on isospin equilibration

Y-axis

N/Z equilibration ratio measured with FAZIA $R_i = (2X_i - X_1 - X_2)/(X_1 - X_2)$, with $X_i = (N_{PLF}/Z_{PLF})_i$ $R_i = +1$ (-1) : no N/Z equilibration $R_i = 0$: full N/Z equilibration

X-axis

Number of fragments detected in INDRA and FAZIA. Can be linked to the impact parameter without model assumption (J. Frankland)

Preliminary conclusion

Little equilibration at high impact parameter Partial equilibration at low impact parameter **To be done** Complete the data reduction Compare with model calculations

Summary and futur plans

E789 analysis

Experiment done last spring and partially analyzed Seems to favor the stiff equation of state (L_{sym} =100MeV) Identification/calibration validated within few months Data-model comparaisons to constrain EoS parameters

Students/postdoc

Joël Quicray, Ph.D. LPC (poster) Julien Lemarié, Ph.D. GANIL Seon Ho Nam, Ph.D. Korean University Maxime Henri, postdoc GANIL Future postdoc for model calculations, LPC

Summary and futur plans

E789 analysis

Experiment done last spring and partially analyzed Seems to favor the stiff equation of state (L_{sym} =100MeV) Identification/calibration validated within few months Data-model comparaisons to constrain EoS parameters

Students/postdoc

Joël Quicray, Ph.D. LPC (poster) Julien Lemarié, Ph.D. GANIL Seon Ho Nam, Ph.D. Korean University Maxime Henri, postdoc GANIL Future postdoc for model calculations, LPC

GANIL PAC 2020

 Isospin dynamics from quasiprojectile fission fragments (Piantelli, INFN Firenze)
Cluster formation and decay in very excited light systems at Fermi energies (Camaiani, INFN Firenze)

FAZIA workshop

From 24 to 25 September in GANIL to discuss futur plans with FAZIA at GANIL (D5, LISE, other couplings)

Thank you for your attention

Diego Gruyer¹, R. Bougault¹, N. Le Neindre¹, O. Lopez¹, L. Manduci¹, M. Parlog¹, J. Quicray¹, E. Vient¹, A. Chbihi², J.D. Frankland², M. Henri², L. Morelli², E. Bonnet³, B. Borderie⁴, E. Galichet⁴, P. Napolitani⁴, S. Barlini⁵, M. Bini⁵, A. Camaiani⁵, G. Casini⁵, P. Ottanelli⁵, G. Pasqualli⁵, S. Piantelli⁵, G. Poggi⁵, S. Valdré⁵, I. Lombardo⁶, G. Verde⁶, R. Alba⁷, C. Maiolino⁷, D. Santonocito⁷, M. Vigilante⁸, M. La Commara⁸, F. Gramegna⁹, M. Cicerchia⁹, G. Mantovani⁹, T. Marchi⁹, M. Cinausero¹⁰, D. Fabris¹⁰, M. Bruno¹¹, T. Kozick¹², S. Upadhyaya¹², A. Kordyasz¹³, A.A. Benitez¹⁴, F.P. Bernal¹⁴, J. Duenas¹⁴, J.E. Garcia Ramos¹⁴

¹LPC Caen, France. ²GANIL, France. ³Subatech Nantes, France. ⁴IPN Orsay, France. ⁵Univ./INFN Florence, Italy. ⁶INFN Sezione di Catania, Italy. ⁷INFN LNS Catania, Italy. ⁸INFN/University Naples, Italy. ⁹INFN LNL Legnaro, Italy. ¹⁰INFN/University Padova, Italy. ¹¹INFN / University Bologna, Italy. ¹²Jagellionian University, Cracow, Poland. ¹³University Varsaw, Poland. ¹⁴University of Huelva, Spain.

