

Nuclear reactions studies for improved nuclear data for science and technology

Stephan Pomp

Department of physics and astronomy, Uppsala University

- Where do the **needs** come from?
- How do we **provide** nuclear physics knowledge?
- What is currently going on and what are the **plans** for NFS?

- Where do the **needs** come from?
- How do we **provide** nuclear physics knowledge?
- What is currently going on and what are the **plans** for NFS?

Nuclear data for SDG

Safety and Security:

Nuclear security and counter terrorism, Remote controlled radiation measurements, radiation detection systems...

Environment:

14 UPT BELOW

13 ACTION

12 ESPONSES CONSUMPTION AND PRODUCT

10 REDUCED

Climate and earth science, Urban pollution, Ocean acidifications, Environmental radioactivity, ...

Materials:

Materials characterization or modification, radiation damage, semiconductors, metallurgy, nanoscience application, ...

8

1.44.1

-m/-

4 QUALITY

5 GENDER

Ø

0

Medical:

Particle therapy, Imaging, Radioisotope production and for therapy, Theranostic approach, Radioprotection, ...

Science:

Heritage science, Space radiations, Astrophysics, Geology, ...

Energy:

LWR, Gen IV reactors, Accelerator Driven Systems, Fusion reactors, Nuclear power sources for space applications, ...

(n,xn) and fission

(n,xn) and fission

Disentangling multi-chance fission needs input from other reaction channels (and neighboring Isotopes):

See talk by Greg Henning today

Fission yields

FY for many systems and excitation energies are needed for both *fuel cycle and nucleosynthesis scenarios*.

Such needs can be fulfilled by **direct measurements** combined with **theoretical developments** that need guidance from other

experimental input (e.g. $\overline{v}(A)$).

Penning trap for fission studies

Use **Penning trap** to measure yields and isomeric yield ratios (IYR) using *direct ion counting* from (proton-induced) fission.

Use IYR to trace back and deduce angular momentum of fragment

(Huizenga and Vandenbosch 1960)

Improves modeling of angular momentum generation; impact on n/γ -emission competition.

Extracted J_{rms}^{av} for isotopes in the ¹³²Sn region

Cd: g.s. is low spin state;

In: g.s. is high spin state

(p,f); (n,f) in progress

Nuclide	Ground state		Isomeric state			IYR	$J^{av}_{ m rms}$
	Ιπ	<i>T</i> _{1/2}	Ιπ	$T_{1/2}$	E_x (keV)		
⁸¹ Ge	9/2+ #	8 (2) s	$(1/2^+)$	8 (2) s	679.14(4)	0.975(7)	
¹¹⁹ Cd	$1/2^{+}$	2.69 (2) m	$11/2^{-}$	2.20 (2) m	146.54(11)	0.871(15)	12.3(5)
¹²¹ Cd	$3/2^{+}$	13.5 (3) s	$11/2^{-}$	8.3 (8) s	214.86(15)	0.867(4)	14.7(1)
¹²³ Cd	3/2+	2.10 (2) s	$11/2^{-}$	1.82 (3) s	143(4)	0.876(7)	15.7(2)
¹²⁵ Cd	3/2+	680 (40) ms	$11/2^{-}$	480 (30) ms	186(4)	0.902(8)	
¹²⁷ Cd	$3/2^{+}$	360 (40) ms	$11/2^{-}$	450 (120) ms	276(15)	0.872(38)	
¹¹⁹ In	$9/2^{+}$	2.4 (1) m	$1/2^{-}$	18.0 (3) m	311.37(3)	0.978(15)	26.2(4)
¹²¹ In	$9/2^{+}$	23.1 (6) s	$1/2^{-}$	3.88 (10) m	313.68(7)	0.971(11)	25.1(5)
¹²³ In	$(9/2)^+$	6.17 (5) s	$(1/2)^{-}$	47.4 (4) s	327.21(4)	0.958(2)	▶ 21.2(2)
¹²⁵ In	$9/2^{+}$	2.36 (4) s	$(1/2)^{(-)}$	12.2 (2) s	360.12(9)	0.950(3)	15.9(3)
¹²⁷ In	$(9/2^{+})$	1.09 (1) s	1/2- #	3.67 (4) s	408.9(3)	0.921 (2)	9.5 (2)
			$(21/2^{-})$	1.04 (10) s	1870 (60)		
¹²⁹ Sb	7/2+	4.366 (26) h	(19/2-)	17.7 (1) m	1851.31(6)	0.441(32)	

 $T_{1/2}$ for ¹²⁷Cd: recent measurement by C. Lorenz et al. at JYFLTRAP (priv. comm.)

V. Rakopoulos et al., PRC 99, 014617 (2019)

Identifying mesurement needs

- Sensitivity studies (for a certain system)
- Target accuracy (requirements for safety/economy)
- HPRL for specific measurements

Example from nuclear medicine

- See talk by Ferid Haddad (Tuesday)
- Nuclear data needed for
 - optimizing (accelerator-based) production,
 - minimizing impurities (e.g. ²¹¹At),
 - development of innovative radionuclei.
- Need for large scale production, reducing dependency on few (reactor) suppliers (like in the case of ⁹⁹Mo/^{99m}Tc).
- Other examples:
 - Dosimetry and
 - dose reconstruction.

DDX for better dose calculations

$$K = \Phi \cdot k_{\Phi}$$

 Φ : fluence of uncharged particles at the same point k_{Φ} : kerma coefficient; unit: [J m² kg⁻¹] or [fGy m²]

$$k_{\Phi}(E_{\rm n}) = N \sum_{i} \int E \int \left(\frac{\mathrm{d}^{2} \sigma_{i}(E_{\rm n})}{\mathrm{d}\Omega \,\mathrm{d}E} \right) \mathrm{d}\Omega \,\mathrm{d}E$$

Kerma: Kinetic energy of the secondary charged particles released by the primary neutron per unit mass.

Dose: Absorbed energy per unit mass from the secondary charged particles.

- range of the secondary charged particles?
- their angular distribution?
- biological response?

And: reaction mechanisms?!

Example from material science

- Reactor materials:
 - dpa and gas production leading to embrittlement and swelling;
- Action by IAEA: https://www-nds.iaea.org/CRPdpa/

Nuclea Provided b	micEnergyAgency ar Data Services y the Nuclear Data Section	IAEA.org NDS Mission About Us	Mirrors: India China Russia Go	Important given	tho	
Databases » EXFOR	Databases » EXECK ENDF CINDA IBANDL Medical PGAA INGAtias RIPL FENDL INDFF					
☆ CRP Participants M. Caturla S. Dudarev	Primary Radiation Da	mage Cross Sections	☆ CRP Documentations TM-2016 Report	ageing of current	LWR.	
U. Fisher	Coordinated Research Project (CRP) app	roved on 13 Dec 2012, CRP Code F44003	INDC(NDS)-0719			
L. Greenwood	duration 4 years, from Nov 2013 (1st RCM) - J	une 2015 (2nd RCM) - October 2017 (3rd RCM)	RCM-2 Report			
P. Griffin	(initiated according the recommendation	ns of Technical Meeting 1-4 Oct 2012)	RCM-1 Report			
Y. Iwamoto			INDC(NDS)-0648			
V. Khryachkov	supplemental Technical M	leeting 13-16 June 2016	TM-2012 Report			
A. Konobeev			INDC(NDS)-0624			
J. Kwon S	cientific Background					
N. Lazarev	The displacement cross section is a reference measure used to characterize	and compare the radiation damage induced by neutrons and charge	CPD Darticoante			
L. Luneville pa	articles in crystalline materials. To evaluate the number of displaced atoms N	lorgett, Torrens and Robinson proposed in 1975 a stan	–			
F. Mota	Nowadays this formulation is recognized as suffering from some limitations:	it is not applicable for compound materials, does not a SUD	etetal Fur	Phys I Phus (2019) 13	1 · < <()	
K. Nordlund	combination of atoms during the cascade evolution, cannot be directly valid			1 11y 5: 5: 1 105 (2015) 10 -	1. 550	
S. Kanler us	sually have now.	Review				
U. Simeone	Upgrading of the dpa-standard means the inclusion of the results of the Mol					
R Stoller	mulations for primary radiation defects (PRD), i.e. Frankel pairs (FP) and In	Eur. Phys. J. Plus (2019) 134 : 350				
1. Sublet	toms (PKA) cascade. It is also called "athermal recombination-correcte	https://doi.org/10.1110/opin/i2010.12750.v				
D. Terentyey	non-dependence on the energy distribution of incident neutrons - this means	nups.//doi.org/10.1140/epjp/i2019-12756-y				
R, Vila or	n the basis of the accumulated dpa-fluence	B				
C. Woo	it also becomes more feasible for comparison of neutron and charged partic	Review				
- (empirical validation against frozen defects at cryogenic temperature (NRT-d					
* Observers	prediction of damage in polyatomic materials and alloys (NRT treats dpa in a					
O. Cabellos	nowever we emphasize that the arc-opa- and rpa-equations are n	Neutron-induced damage simul	ations: Boyond o	lefect production cross-		
1-P. Crocombette	somewhat more accurate estimate of the actual damage production or num	Neution-muuceu uamage simu	alloiis. Deyoliu t	lelect production cross-		
M. Gilbert	erenet Objectives	section, displacement per atom	and iron-based	metrics		
D. Leichtle	esearch Objectives					
L. Ping	To find ways overcome the drawbacks of the NRT standard employing the r					
S. Simakov	 revisit the NPT standard for its improving by the inspection of recoil spect 	I -Ch Sublet ^{1*} I P Bondarenko ² G Bonn	v ³ .I.I. Conlin ⁴ M.R. Gil	bert ⁵ I R Greenwood ⁶ P I Griffin ⁷ P		
	 revisit the NRT standard for its improving by the inspection of recoil speci 	U JCh. Sublet , I. F. Bondarenko , G. Bonn	y, J. L. Comm, M. K. On			
		Helgesson ⁸ , Y. Iwamoto ⁹ , V. A. Khryachkov ² , T.	A. Khromyleva ² , A. Yu. K	onobeyev ¹⁰ , N. Lazarev ¹¹ , L. Luneville ¹² ,		

• Somewhat "easier": Radiation effects in electronics

Radiation effects in electronics

Single-Bit Upset (SBU)

"Wanted and unwanted memory loss"

S. Pomp, Colloque GANIL 2019

Slide adapted from Alexander Prokofiev

- Where do the **needs** come from?
- How do we **provide** nuclear physics knowledge?
- What is currently going on and what are the **plans** for NFS?

Data quality assurance

• NEA is setting up a new SG in *Reproducibility in Nuclear Data Evaluation*.

- A key to reproducibility is the possibility of *automatic interpretation* of the experiments.
- Today, many of the r in the co-variance fil

Tough challenge for the experimentalist but important!

- Detailed documentation of sources of uncertainties and correlations, as well as correlations between experiments, is essential to produce wellfounded co-variances in new evaluations.
- This information needs also to be available in EXFOR.

Modern nuclear data evaluation

TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology

A.J. Koning,^{1,2,*} D. Rochman,³ J.-Ch. Sublet,¹ N. Dzysiuk,^{4,5} M. Fleming,^{6,7} and S. van der Marck⁴
 ¹Nuclear Data Section, International Atomic Energy Agency, P.O. Box 100, 1400 Vienna, Austria
 ²Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
 ³Laboratory for Reactor Physics Systems Behaviour, Paul Scherrer Institut, Villigen, Switzerland
 ⁴NRG, Westerduinweg 3, 1755 LE Petten, Netherlands
 ⁵Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
 ⁶Nuclear Energy Agency, OECD, 92100 Boulogne-Billancourt, France
 ⁷United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, United Kingdom

United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, United Kingdom (Received 3 August 2018; revised received 7 November 2018; accepted 29 November 2018)

The TENDL library is now established as one of the major nuclear data libraries in the world, striving for completeness and quality of nuclear data files for all isotopes, evaluation methods, processing and applied performance. To reach this status, some basic principles have been applied which sets it apart from other libraries: reproducible dedicated evaluations when differential data are available, through determination of nuclear models implemented in TALYS and their parameters, completeness (with or without experimental data), format and processing standardization, automation of production and reproducibility. In this paper, we will outline how such an approach has become a reality, and recall some of the past successes since the first TENDL release in 2008. Next, we will demonstrate the performance of the latest TENDL releases for different application fields, as well as new approaches for uncertainty quantification based on Bayesian inference methods and possible differential and integral adjustments. Also, current limitations of the library performances due to modelling and needs for new and more precise experimental data will be outlined.

TENDL-2019beta: (release date: end of 2019)

Last update: 19 august 2019

TENDL is a nuclear data library which provides the output of the TALYS nuclear model code system for direct use in both basic physics and applications. The 10th version is **TENDL-2019**, which is based on both default and adjusted **TALYS** calculations and data from other sources (previous releases can be found here: <u>2008</u>, <u>2009</u>, <u>2010</u>, <u>2011</u>, <u>2012</u>, <u>2013</u>, <u>2014</u>, <u>2015</u>), and . <u>2017</u>).

Up to 2014, TENDL was produced at NRG Petten. Since 2015, TENDL is mainly developped at PSI and the IAEA (Nuclear Data Section). Still, many people contributes to TENDL with the testing and processing of the files.

TENDL contains evaluations for seven types of incident particles, for all isotopes living longer than 1 second (about 2800 isotopes), up to 200 MeV, with covariances.

TENDL is **not** a default or shadow library. Not a single neutron evaluation is based on default calculations. With the HFR approach, all resonances are unique, following statistical rules. For important isotopes, great care was used in the evaluations.

https://tendl.web.psi.ch/tendl_2019/tendl2019.html

- Where do the **needs** come from?
- How do we **provide** nuclear physics knowledge?
- What is currently going on and what are the **plans** for NFS?

Some background:

UPPSALA UNIVERSITET

- Currently no (!) neutron facility in the Nordic countries; no research reactor, no accelerator, not even a 14 MeV generator (but soon ...)
- Few facilities worldwide (QMN over 20 MeV < 5)
- NFS is filling a gap and meets the needs to a large extend
- Flexibility is one of the great assets

Neutron production at NFS

NFS is ...

EURADOS Report 2013-02

Braunschweig, May 2013

ISSN 2226-8057 ISBN 978-3-943701-04-3

... one of a few QMN facilities ...

Facility	Energy range [MeV]	Peak neutron fluence rate at standard irradiation position [cm ⁻² s ⁻¹]	Beam angle relative to primary beam	Remarks
iThemba °	35 – 200	104	0°, 4°, 8°, 12°, 16°	
TSL	11 – 175	$10^{6} \text{ for } E_{p} < 100 \text{ MeV}$ $10^{5} \text{ for } E_{p} > 100 \text{ MeV}$	0°	large experimental area
TIARA	40-90	104	0°	large irradiation room
CYRIC ^d	20-90	10 ⁶	0°	
RCNP ^e	100 - 400	10⁵	0° - 30°	up to 100 m ToF
NPI ^f	18 – 36	Up to 10 ⁹	0°	Standard irradiation very close to source
NFS ^g	20 - 33	n.a. yet	0°	Start late 2014

neutron fields: existing facilities and future needs Pomp S., Bartlett D.T., Mayer S., Reitz G., Röttger S., Silari, M., Smit F.D., Vincke H., and Yasuda H. Rad. Prot. Dosim. 161 (2014) 62-66.

http://www.eurados.org/en/Documents_Publications/Reports_documents

EURADOS

High-energy quasi-monoenergetic

... and a complement to other white neutron beams

Rich experimental program at NFS

Rich experimental program at NFS

Lol and proposals for Day 1 exp.

Neutron induced reactions studies :

- Lol_13 : Study of pre-equilibrium process in (n,xn) reaction, X. Ledoux
- Lol_14 : Comparison between activation and prompt spectroscopy as means of (n,xn) cross section measurements, M. Kerveno
- Lol_20 : Direct measurement of (n,xn) reaction cross sections on ²³⁹Pu, G. Bélier
- Lol_21 : Light-ion production studies with Medley, S. Pomp
- SCALP Scintillating ionization Chamber for ALpha particle Production in neutron induced reaction, G. Lehaut

Fission :

- Lol_15 : Fission fragment distributions and neutron multiplicities, D. Doré
- Lol_22 : Fission fragment angular distribution and fission cross section measurements relative to elastic np scattering with Medley, S. Pomp
- Lol_28 : Study of the fission process and fission cross-section measurements, G. Bélier
- Measurements of prompt fission neutron energy spectra for fast neutron induced fission on major and minor actinides, A. Sardet

Measurement of prompt fission gamma-ray spectra in fast neutron induced-fission of actinides, J.M. Laborie

Gamma-rays spectroscopy and lifetime measurements at NFS, A. Dijon

Cross-section reaction measurements by activation technique :

Lol_16 : Proton and deuteron induced activation reactions, P. Bem

Lol_24 : Neutron-induced activations reactions, A. Klix

Measurement of cross-sections of deuteron-induced reactions on Ni and Zn, J. Grinyer

Biology :

Lol_23 : Response of Mammalian cells to neutron exposure, C. Hellweg

R&D for the production of radioisotopes for medical applications at NFS, G. De France

Investigation of 211At and 64Cu medical radioisotope production at NFS, J. Grinyer

Detector development :

Lol_29 : Neutron spectrometer characterization for LMJ project, B. Rossé

Characterization of neutron signal in Si-CsI telescope an measurement of the absolute neutron detection efficiency, E. Bonnet

10 submitted proposal:7 accepted in this first round

Slide courtesy Xavier Ledoux

	NUM	Title	Spokesperson
Reaction model	E712	Measurement of (n,xn) reaction cross sections on U238	G. Bélier, CEA-DAM
	E721	LIONS - Light-Ion Production Studies with Medley at the NFS facility	A.V. Prokofiev, Uppsala University
Fission	E713	Prompt fission neutron spectra measurement in neutron induced fission reactions	B. Laurent, CEA-DAM
	E718	Fission fragment angular distribution and fission cross section measurements relative to elastic NP scattering at 30 MeV	D. Tarrio, Uppsala University
Fusion		Excitation functions of short-lived isotopes in proton induced reactions on ^{nat} Fe	E. Simeckova, NPI, Rez
	E715	Neutron-induced activation reactions	A. Klix, KIT
Radionuclei for		Alpha-induced reaction cross-section measurements on natural and enriched Zn	J. Grinyer, GANIL
medical applications	E717	Measurements of the excitation function for the production of possible candidates for targeted alpha therapy at SPIRAL2	G. de France, GANIL
Astrophysic	E719	Precise direct measurements of the 28 Si(p, γ) 29 P and 29 Si(p, γ) 30 P reaction rates to understand the origin of presolar nova grains	B. Bastin, GANIL
Instrumentation	E720	Measurement of the absolute neutron detection efficiency of FAZIA telescopes	E. Bonnet, GANIL

α-induced radioisotope production (case of ¹²⁴I)

• Better to use (α, x) on Sb than (p, x) on Te? (impurities)

α-induced radioisotope production (case of ⁶⁸Ge for ⁶⁸Ga)

SCONE – (n,xn) vs fission

(one of several proposed n,xn exp.)

Multiplate fission chamber: $360 \text{ mg of } {}^{238}\text{U} \rightarrow$ 72 deposits, CF₄ gas, homemade dedicated preamps \rightarrow Fission veto

SCONE (Solid COunter for NEutron)

Gd-loaded scintillators.

Require time-correlation to supress bgr.

Range: 6 MeV < E_n < 20 MeV Targets: ²³⁸U, plan for ²³⁹Pu

Medley – Light-ion production ...

- Cancer therapy and dosimetry (H, C, O, Ca, ...)
- Radiation effects in microelectronics (SEU; single event upsets) Si, O, ... Silicon and oxygen data is needed for:
- Energy applications (GenIV, fusion)
 - Construction material: Fe, Cr, ...
 - Fuel: U, Th, ...
 - Coolant: Pb, Bi, Na, ...
 - $^{16}O(n,\alpha)$ affects reactor reactivity, 25% of the helium production

Medley

Evacuated chamber ΔE - ΔE -E technique + angles \Rightarrow double differential xs

S. Pomp, Colloque GANIL 2019

Tippawan et al., Phys. Rev. C 79, 064611 (2009).

E721

Medley – Light-ion production ..

• Cancer therapy and dosimetry (H, C, O, Ca, ...)

E721

Study DDX for ^{nat}C(n,lcp) in the 10 to 30 MeV range; Improve theoretical understanding of competition of different reaction mechanisms (multi particle, preequilibrium)

Medley

Evacuated chamber ΔE - ΔE -E technique + angles \Rightarrow double differential xs

S. Pomp, Colloque GANIL 2019

Tippawan et al., Phys. Rev. C 79, 064611 (2009).

... neutron spectra and standards

Add PPACs, and a target arrangement of $^{235}U - CH_2 - ^{238}U$

for simultaneous measurement of neutron standards vs primary H(n,n) standard with minimal syst. uncert.

(+ "for free": FFAD)

FALSTAFF

Four arm cLover for the Study of Actinide Fission Fragments

- Spectrometer for fission fragment detection in coincidence
 - o Kinetic energy
 - Masses BEFORE and AFTER evaporation (-> $\overline{v}(A)$)
 - o Charge
- → Mass **before** evaporation → 2V method <u>TOF</u> : Good time resolution (σ) <150 ps
 - Large solid angle (~1% of 4π)
 Good position resolution (1.2 mm)

- Mass after evaporation → EV method Energy & TOF
 - Good energy resolution (~1%)
 - Charge identification (dE profile)

Slide courtesy Diane Doré

... I could convince you

- that the field of nuclear data research is important,
- that NFS offers rich possibilities,
- and that there is much work ahead for experimentalists and theorists to provide modern, high-quality nuclear data for use in science and technology!

Thanks!

And thanks to

Maëlle Kerveno, Xavier Ledoux, Henrik Sjöstrand, Alexander Prokofiev, and the NFS collaboration!

50+ physicists from 16 labs ...

... are eagerly waiting for first beam and running experiments at NFS!

CEA/DAM/DIF, F-91297, Arpajon, France CEA/DSM/IRFU/SPhN, Saclay, France CENBG, Gradignan, France LPC. Caen. France IPHC, Strasbourg, France NPI, Řež, Czech Republic Uppsala University, Uppsala, Sweden KIT, Karlsruhe, Germany GANIL, Caen, France NIPNE, Bucharest, Romania JRC/IRMM, Geel, Belgium CEA/DEN, Cadarache, France IPNO, Orsay, France CIMAP. Caen. France Culham Centre for Fusion Energy, United Kingdom ELI-NP, Bucharest-Magurele, Romania

