

Time Dependent Recoil In Vacuum measurements on radioactive ions

Georgi Georgiev CSNSM, content France and ANU, Cantorna, Australia

Nuclear moments – Why?

• Nuclei with non-zero spin have magnetic dipole moment $\mu = gI[\mu_N]$

Sources of nuclear magnetism:

- orbital movement of charged particles;
- intrinsic spin of the nucleons.
- Magnetic moment of a nucleus:

$$\vec{\mu} = \sum_{k=1}^{A} g_{\ell}^{(k)} \vec{\ell}^{(k)} + \sum_{k=1}^{A} g_{s}^{(k)} \vec{s}^{(k)} - \text{the contribution of every nucleon}$$

• $\pi/\nu g$ factors:

$$\begin{array}{c} free - nucleon \\ g_{s}^{\pi} = 5.585 \quad g_{\ell}^{\pi} = 1 \\ g_{s}^{\nu} = -3.286 \quad g_{\ell}^{\nu} = 0 \end{array} \longrightarrow \begin{array}{c} effective \\ g_{s}^{\pi} = 0.7 * g_{s}^{\pi} \quad g_{\ell}^{\pi} = 1.x \\ g_{s}^{\nu} = 0.7 * g_{s}^{\nu} \quad g_{\ell}^{\nu} = 0.y \end{array}$$

XXI Colloque GANIL, 13 September 2019, Strasbourg, France

Nuclear moments around the "Island of Inversion"

- Mg's and the "Island of Inversior⁴
 - ³²Mg first identified with high B(E2) and low E_x (2⁺)

• Ground-state's moments of the Mg isotopes:

→ s.p. states, not sensitive to configuration mixing but to the odd-nucleon orbit e.g. ³¹Mg – magnetic moment of 1/2⁺ state well reproduced even if its energy (sd model space) is > 1 MeV off

Even-even Mg isotopes (2⁺ states)

- ²⁶Mg new results from a TF measurement (**B.P. McCormick** *et al.*, **PLB 779**, 445 (2018))
- ²⁴Mg (N=Z) and ²⁶Mg (vd_{5/2} subshell) rather "simple" theory cases

 $^{28}Mg - ^{32}Mg - real tests$ for the interactions

- ²⁸Mg the important (*or not?*) role of the N=16 sub-shell gap at Z=12?
- New estimations for the borders of the "Island of Inversion"
 T. Otsuka *et al.*, INPC 2016 presentation.
 → it is necessary to include *pf* admixtures in order to reproduce the

structure of the excited states already in ³⁰Mg

Experimental approach

- Important ingredients:
 - o Obtain nuclear spin-oriented ensemble
 - Apply an external (magnetic) perturbation $\rightarrow \omega_L = -\frac{g\mu_N B}{\hbar}$
 - Have sufficient time for the interaction
 - Know with a sufficient precision the perturbing field
 - o Measure the level of perturbation

- Time Differential measurements: E. Recknagel in Pure and Applied Physics, 40C
 - observe several rotations of the nuclear spin ensemble within its lifetime \rightarrow for a state with $g \sim 0.4 0.5$

	•
lifetime	magnetic field
150 ns	1 Tesla
1.5 ps	100 kTesla

XXI Colloque GANIL, 13 September 2019, Strasbourg, France

TDRIV – basic principles and RIB geometry

XXI Colloque GANIL, 13 September 2019, Strasbourg, France

TDRIV @ HIE-ISOLDE – the setup

8 Miniball triple cluster detectors
 @ (close to) 90° angles

DSSD for particle detection

• angular coverage $\theta = 21^\circ - 50^\circ$

 $\phi = 0^{\circ} - 360^{\circ}$

4 quadrants, 12 sectors each

3.9 mg/cm² Nb target
1.1 mg/cm² Ta degrader

first use of the

~ 20 distances

Miniball plunger

beam

• ~7% efficiency at 1.4 MeV

²²Ne – a "test" measurement

- ²²Ne (5.5 Mev/u, 1.5 ppA) from EBIS rest gas
- Beam intensity (10⁷ pps) limited by the scattering rate in the CD detector
- 5 days stable beam run

previous measurements:

R.E. Horstman et al., NP A 275 (1977), 237

|g| = 0.326(12)

and

R. Böhm et al., Z. Phys. A 278 (1976) 133

 $|\mathbf{g}| = 0.36(3)$

XXI Colloque GANIL, 13 September 2019, Strasbourg, France

How reliable is the previous value of $g(2^+)$ of ^{22}Ne ?

- Could there be something *not quite correct* with the *previous most accurate g(2⁺) value* of R.E. Horstman *et al.* (
- Comparison of previously known g(2⁺) in

- ²⁰Ne: |g| = 0.54(4) (R.E. Horstman *et al.*, NP A 248, (1975), 291) and

 $-^{22}$ Ne: |g| = 0.326(12) (R.E. Horstman *et al.*, NP A 275 (1977), 237)

gives a discrepancy (a factor of ~ 2!) for the **transient field strength** of the two isotopes of the same element – **unphysical**!!!

XXI Colloque GANIL, 13 September 2019, Strasbourg, France

The "real RIB" experiment

- ${}^{28}Mg (t_{1/2} = 20.9 h) the bright side$
 - o expected beam intensity: $1x10^6 5x10^5$ pps
 - available: + 5x10⁶ pps!!
 - \circ well pronounced particle γ angular correlations observed
 - 10 plunger distances measured
- and the difficulties ...
 - count rates in the Ge detectors + 5k /Ge core (and increasing!) with half of the available proton beam intensity. Running for 7 days @ 10k/det.
 - scattered beam deposited in the vacuum chamber
 beta-decay ²⁸Mg → ²⁸Al → ²⁸Si (stable): 100% 1779 keV + more then
 60 % of higher then 1342 keV impossible to be shielded ...
- Present status
 - o data under analysis in progress

XXI Colloque GANIL, 13 September 2019, Strasbourg, France

Conclusions and outlook

- Magnetic moments of single particle (odd-mass ground or isomeric states)
 vs. collective (short-lived excited states) probing different components
 and admixtures in the nuclear wave function
- Studies with high intensities post-accelerated RIB are very promising but require some special attention. The radioactive ion beam are ... radioactive. RIB of 10⁶ pps is high intensity! Where is the compromise between high-efficiency vs. large opening for RIB's?
- Relying on old, "well established" results one may run into surprises.
 Revisiting experimental results from few decades ago (pushing the limits at their time) might be a necessary step before reaching for new exciting radioactive beam challenges.
- Stay tuned for exciting results to follow

The collaboration

- CSNSM, Orsay, France J. Ljungvall, A. Boukhari, R. Lozeva
- ANU, Canberra, Australia <u>A.E. Stuchbery</u>, B. Coombes
- ISOLDE, Geneva, Switzerland L.Gaffney
- ELI-NP, Magurele, Romania D.L. Balabanski, A. Kusoglu, C. Sotty
- IPN, Orsay, France D.T. Yordanov
- IKP, Uni. Cologne, Germany N. Warr, Ch. Fransen, Th. Braunroth, A. Goldkuhle
- Uni. Complutense, Madrid, Spain L.M. Fraile, J. Benito Garcia
- IKP, TU Darmstadt, Germany T. Kroell, C.Henrich, O. Papst, V. Werner, J. Wiederhold
- Uni. Manchester, UK N.S. Bondili, D. Cullen, M. Giles, L. Barber
- Uni. Athens, Greece Th. Mertzimekis, A. Chalil, G. Zagoraios