Time Dependent Recoil In Vacuum measurements on radioactive ions

Georgi Georgiev
CSNSM, Orsay, France and ANU, Canberra, Australia
Nuclear moments – Why?

• Nuclei with non-zero spin have magnetic dipole moment
 \[\mu = g I \left[\mu_N \right] \]

- Sources of nuclear magnetism:
 - orbital movement of charged particles;
 - intrinsic spin of the nucleons.

- Magnetic moment of a nucleus:
 \[\vec{\mu} = \sum_{k=1}^{A} g^{(k)}_{\ell} \vec{\ell}^{(k)} + \sum_{k=1}^{A} g^{(k)}_{s} \vec{s}^{(k)} \] - the contribution of every nucleon

- \(\pi/\nu \) g factors:
 - free – nucleon
 \[g^\pi_s = 5.585 \quad g^\pi_\ell = 1 \]
 \[g^\nu_s = -3.286 \quad g^\nu_\ell = 0 \]
 - effective
 \[g^\pi_s = 0.7 \times g^\pi_s \quad g^\pi_\ell = 1 \times \]
 \[g^\nu_s = 0.7 \times g^\nu_s \quad g^\nu_\ell = 0.7 \times \]
Nuclear moments around the “Island of Inversion”

- Mg’s and the “Island of Inversion”
 - \(^{32}\text{Mg}\) – first identified with high B(E2) and low \(E_x\) (2\(^+\))

- Ground-state’s moments of the Mg isotopes:
 - s.p. states, not sensitive to configuration mixing but to the odd-nucleon orbit
 - e.g. \(^{31}\text{Mg}\) – magnetic moment of 1/2\(^+\) state well reproduced even if its energy (\(sd\) model space) is > 1 MeV off
Even-even Mg isotopes (2\(^+\) states)

- \(^{26}\text{Mg}\) – new results from a TF measurement (B.P. McCormick et al., PLB 779, 445 (2018))
- \(^{24}\text{Mg}\) (N=Z) and \(^{26}\text{Mg}\) (\(v_{d_{5/2}}\) subshell) – rather “simple” theory cases
- \(^{28}\text{Mg} – ^{32}\text{Mg}\) – real tests for the interactions

- \(^{28}\text{Mg}\) – the important (or not?) role of the N=16 sub-shell gap at Z=12?
- New estimations for the borders of the “Island of Inversion”
 T. Otsuka et al., INPC 2016 presentation.
 → it is necessary to include \(pf\) admixtures in order to reproduce the structure of the excited states already in \(^{30}\text{Mg}\)
Experimental approach

• Important ingredients:
 o Obtain nuclear spin-oriented ensemble
 o Apply an external (magnetic) perturbation → ω_L = - \frac{g\mu_NB}{\hbar}
 • Have sufficient time for the interaction
 • Know with a sufficient precision the perturbing field
 o Measure the level of perturbation

• Time Differential measurements: E. Recknagel in Pure and Applied Physics, 40C
 • observe several rotations of the nuclear spin ensemble within its lifetime
 → for a state with g ~ 0.4 – 0.5
 lifetime magnetic field
 150 ns 1 Tesla
 1.5 ps 100 kTesla
TDRIV – basic principles and RIB geometry

$$D = \nu T$$

$$F = I + J$$

J electron spin

G nuclear spin

$$\bar{G}_k(T) = \int_0^T G_k(t) \lambda e^{-\lambda t} dt$$

$$G_k(\infty) = \int G_k(t) \lambda e^{-\lambda t} dt$$

24Mg @ ALTO

$$|g(2^+)| = 0.538 (13)$$

A. Kasoglu et al., PRL 114, 062501 (2015)
TDRIV @ HIE-ISOLDE – the setup

- 8 Miniball triple cluster detectors @ (close to) 90° angles

DSSD for particle detection
- 3.9 mg/cm² Nb target
- 1.1 mg/cm² Ta degrader

- angular coverage
 \(\theta = 21° – 50° \)
 14 sectors
 \(\varphi = 0° – 360° \)
 4 quadrants, 12 sectors each

- first use of the Miniball plunger
- ~ 20 distances

- ~7% efficiency at 1.4 MeV
22Ne – a “test” measurement

- ^{22}Ne (5.5 Mev/u, 1.5 ppA) – from EBIS rest gas
- Beam intensity (10^7 pps) - limited by the scattering rate in the CD detector
- 5 days stable beam run

| our preliminary value: $|g| = 0.445(25)$ |
| vs. |
| previous measurements: |
| $|g| = 0.326(12)$ |
| and |
| $|g| = 0.36(3)$ |

R.E. Horstman *et al.*, NP A 275 (1977), 237

How reliable is the previous value of $g(2^+)$ of 22Ne?

- Could there be something *not quite correct* with the *previous most accurate $g(2^+)$ value* of R.E. Horstman *et al.* (adopted by N.J. Stone in “Table of nuclear moments” INDC(NDS)-0658)???

- Comparison of previously known $g(2^+)$ in
 - 20Ne: $|g| = 0.54(4)$ (R.E. Horstman *et al.*, NP A 248, (1975), 291)
 - 22Ne: $|g| = 0.326(12)$ (R.E. Horstman *et al.*, NP A 275 (1977), 237)

 gives a discrepancy (a factor of ~ 2!) for the *transient field strength* of the two isotopes of the same element – *unphysical*!!!
The “real RIB” experiment

- $^{28}\text{Mg} \left(t_{1/2} = 20.9 \text{ h} \right)$ – the bright side
 - expected beam intensity: $1 \times 10^6 - 5 \times 10^5$ pps
 - available: $+ 5 \times 10^6$ pps!!
 - well pronounced particle – γ angular correlations observed
 - 10 plunger distances measured

- and the difficulties …
 - count rates in the Ge detectors - $+ 5k / \text{Ge core}$ (and increasing!) with half of the available proton beam intensity. Running for 7 days @ 10k/det.
 - scattered beam deposited in the vacuum chamber
 – beta-decay $^{28}\text{Mg} \rightarrow ^{28}\text{Al} \rightarrow ^{28}\text{Si}$ (stable): 100% 1779 keV + more than 60% of higher than 1342 keV – impossible to be shielded …

- Present status
 - data under analysis in progress
Conclusions and outlook

• Magnetic moments of single particle (odd-mass ground or isomeric states) vs. collective (short-lived excited states) – probing different components and admixtures in the nuclear wave function

• Studies with high intensities post-accelerated RIB are very promising but require some special attention. The radioactive ion beam are radioactive. RIB of 10^6 pps is high intensity! Where is the compromise between high-efficiency vs. large opening for RIB’s?

• Relying on old, “well established” results one may run into surprises. Revisiting experimental results from few decades ago (pushing the limits at their time) might be a necessary step before reaching for new exciting radioactive beam challenges.

• Stay tuned for exciting results to follow
The collaboration

- CSNSM, Orsay, France – J. Ljungvall, A. Boukhari, R. Lozeva
- ANU, Canberra, Australia – A.E. Stuchbery, B. Coombes
- ISOLDE, Geneva, Switzerland – L. Gaffney
- ELI-NP, Magurele, Romania - D.L. Balabanski, A. Kusoglu, C. Sotty
- IPN, Orsay, France – D.T. Yordanov
- IKP, Uni. Cologne, Germany – N. Warr, Ch. Fransen, Th. Braunroth, A. Goldkuhle
- Uni. Complutense, Madrid, Spain – L.M. Fraile, J. Benito Garcia
- IKP, TU Darmstadt, Germany – T. Kroell, C. Henrich, O. Papst, V. Werner, J. Wiederhold
- Uni. Manchester, UK – N.S. Bondili, D. Cullen, M. Giles, L. Barber
- Uni. Athens, Greece – Th. Mertzimekis, A. Chalil, G. Zagoraios