Isotope production for medical applications: what can be done?

F. Haddad on behalf of the Arronax team and Prisma@subatech

Radionuclides production for nuclear medicine

Nuclear medicine is a medical specialty which deals with **radionuclide** used **as open sources** (30 Millions procedures per year - 2013).

- *Highly penetrating* radiation are used **for imaging and diagnosis** (X, γ , β +)
- Low penetrating radiation are used for therapy (α , β -,e-Auger)

In some cases, the radionuclide can be injected directly:

Iodine-131 goes directly to the thyroid

Rubidium-82 is accumulating in the heart

Radium-223 goes to the bones.

In most cases, a vector molecule is needed to target the cells of interest.

Targeting

Peptides and Antibodies can be used as **vector** for either imaging and therapy

There is often a limited number of receptor sites on a cell

Targeting allows to find the right guy in a complex environment

antibody anti-« red and white strips »

Targeting allows to find the right guy in a complex environment

Targeting allows to find the information

antibody anti-« red and white strips »

Targeting allows to find the right guy in a complex environment

Changing vector, we can be more specific

Antibody « anti-Charlie »

Every patient is unique

There is differences between each person:

- Some are straightforward: Age, Sex, Size, Weight, ...
- Some others are less simple as biological and biochemical constants, genetic characteristics, ...

There is a need for personalized treatment

Theranostics

It is a treatment strategy that combines therapeutics with diagnostics.

- Localized lesions
- Define the biodistribution of a therapeutic agent to anticipate its effect
- Select patients which are expected to response to the therapeutic agent
- Calculate the optimal activity to be injected
- Evaluate the response after treatment

The Right Drug To The Right Patient For The Right Disease At The Right Time With The Right Dosage

Theranostics

Which radionuclides?

Radionuclides of the same element (⁴⁴Sc/⁴⁷Sc, ⁶⁴Cu/⁶⁷Cu, ¹²⁴I/¹³¹I, Tb ...) Radionuclides with comparable properties (⁶⁸Ga / ¹⁷⁷Lu , ^{99m}Tc / ¹⁸⁸Re) Radionuclide with radiations for both imaging and therapy (^{117m}Sn)

¹⁷⁷Lu-radioligand therapy of advanced prostate cancer

R.P. Baum et al., J Nucl Med 2016;57:1006. C. Kratochwil et al., J Nucl Med 2016;57:1170. K. Rahbar et al., J Nucl Med 2017;58:85.

Nuclear medicine needs radionuclides

– with different decay radiations:

imaging / therapy

short range High LET vs long range Low LET

- with different Chemical properties
- with different Half-lives: to match with vector distribution time in targeted therapy
- To be used for the Theranostics approach

 \rightarrow pair of isotopes

- With an appropriate purity

Nuclear Physics can help by developing **efficient large scale** production of **high purity** radionuclides (innovative or not)

Its unique characteristics

Main characteristics: Multi-particles High energy High intensity

Beam	Accelerated particles	Energy range (MeV)	Intensity (eµA)	Dual beam
Proton	H-	30- 70	<375	Yes
	HH+	17	<50	No
Deuteron	D-	15-35	<50	Yes
Alpha	He++	68	<70	No

What can we do ?

High purity:

□ Nuclear data

≻Allow to estimate production yield

≻Allow to define level of contaminants

>Allow to adjust energy range of interest

Production route:

²⁰⁹Bi + $\alpha \rightarrow$ ²¹¹At + 2n

Energy range of interest:

[20 MeV - 28,3 MeV]

Cu-67 production

It is a β - emitter with 185 keV γ -line	Targeted therapy with β -, SPECT imaging
$T_{1/2} = 61.83 h$	Central production + continental delivery
It has a β + emitter partners: ⁶⁴ Cu – T _{1/2} = 12.7 h	Theranostic pair: ⁶⁴ Cu/ ⁶⁷ Cu

Production routes with charged particles:

• ⁶⁸Zn(p,2p)

used at BNL to make ⁶⁷Cu available part of the year

used at PSI in the past

- ⁷⁰Zn(p,α)
- ⁶⁸Zn(d,x)
- ⁷⁰Zn(d,x)
- ⁶⁴Ni(α,p)

Used in the USA

Looking to cross section will allow to determine the best ones

IAFA current CRP

on Cu-67

Cu-67 production

New cross section dataset for ⁷⁰Zn(d,x)⁶⁷Cu

Cross section is 2 more important than with the proton route Code calculations fail to reproduce the data

→ Our data help improve predictions

What can we do?

High purity:

- Nuclear data
- □ Mass separation technique to get high purity products

Laser resonance ionization coupled to mass separation will increase product purity

Arronax is part of the MEDICIS collaboration (CERN)

Resonant laser ionization & mass separation: cold experiments

Experiments performed for Tb and lanthanides

Proof of principle should be performed as soon as MELISSA laboratory@CERN will be ready

V. GADELSHIN et al, NIMB (2019) https://doi.org/10.1016/j.nimb.2019.04.024

- Er-169 produced @ILL Terbium produced @Arronax
- Experiment already performed without laser ionization (2018 and 2019) Soon laser ON

MEDICIS

What can we do?

High purity:

- Nuclear data
- □ Mass separation technique to get high purity products

Innovative radionuclides

 \Box New isotopes for new concept (44Sc, Tb quadruplet, α emitters,...)

Kratochwil et al. J Nucl Med 2016; 57:1-4

α-emitters are giving good results

Main α -emitters of medical interest

Radionuclide	Half-life (h)	# of alpha particles / decay	Eγ (keV)	Branching Ratio (%)
Tb-149	4,1 h	0,17 (β and ε)	165	26
At-211	7,2 h	1	79	21
Bi-212	1 h	1(β)	727	7
Bi-213	45 m	1(2β)	440	26
Ra-223	11,4 d	4 (2β)	269	14
Ac-225	10 d	4(2β)	100	1
Th-226	31 m	4	111	3
Th-227	18,7 d	5(2β)	256	7

A limited number of potential candidates

Astatine-211 is our choice

At-211 characteristics

Nearly ideal alpha emitter:

- T_{1/2}: not too short nor too long (7,2 h) → suitable for targeting biomolecules
- 2 decay branches leading to the emission of one alpha particle
- Available from accelerator production (28 MeV)
 → easy to scale-up

Use of high LET particles: Astine-211 Production route: $^{209}Bi + \alpha \rightarrow ^{211}At + 2n$

Target preparation (deposition under vacuum)

Dry extraction method

Astatine output: few minutes – extraction time around $\approx 2 \text{ h}$ – Extraction yield: >80%

What can we do ?

High purity:

Nuclear data

□ Mass separation technique to get high purity products

Innovative radionuclides

 \Box New isotopes for new concept (44Sc, Tb quadruplet, α emitters,...)

Large scale

Highly intense beams: Targetry, beam diagnostics, activation and maintenance issues

ANR Repare (granted July 2019)

- **REPARE**: research and developments for the Production of innovative radioelements
- Partners: GANIL(Leader), Subatech, GIP Arronax, LDM-TEP, CERN
- **Duration** : 4 years

Production of Astatine-211

- Cross section measurements of alpha and lithium indiuced reaction on Bi and Pb
- Solid target technology
- Liquid target with on line extraction
- Indirect production 211 Rn $\rightarrow {}^{211}$ At using Li beam

The principle of the liquid target with on-line extraction

What can we do ?

High purity:

Nuclear data

□ Mass separation technique to get high purity products

Innovative radionuclides

 \Box New isotopes for new concept (44Sc, Tb quadruplet, α emitters,...)

Large scale

- □ Highly intense beams: Targetry, beam diagnostics, activation and maintenance issues
- □ New developments in accelerator : electron Linac and photoreaction

Photo-production of Isotopes

10°

photon

Photon flux, 10**

16

Figure 2. A compact superconducting accelerator used for radioisotope production

What can we do?

High purity:

Nuclear data

□ Mass separation technique to get high purity products

Innovative radionuclides

 \Box New isotopes for new concept (44Sc, Tb quadruplet, α emitters,...)

Large scale

- □ Highly intense beams: Targetry, beam diagnostics, activation and maintenance issues
- □ New developments in accelerator: linac or compact cyclotrons

Efficient

□ Neutron production without reactor

A Neutron source with industrial capabilities @ Arronax

350µA , 70 MeV protons $\rightarrow 10^{12}$ n/s

Our neutron Activator

Loading/unload ing station

Partnership: AAA, Nanoh, ARRONAX, SUBATECH, vetAgro, INSA Lyon,

Irradiation time

What can we do ?

High purity:

Nuclear data

□ Mass separation technique to get high purity products

Innovative radionuclides

 \Box New isotopes for new concept (44Sc, Tb quadruplet, α emitters,...)

Large scale

- □ Highly intense beams: Targetry, beam diagnostics, activation and maintenance issues
- □ New developments in accelerator: linac or compact cyclotrons

Efficient

- □ Neutron production without reactor
- □ Alternative production route for established radionuclides

Re-186 ($T_{1/2}$ = 3.7 d - β - emitter)

Fig. 1. $^{nat}W(d, x)^{186g}$ Re production cross section.

Deuteron is 3 times more efficient than proton

C. Duchemin et al, Appl. Rad. And Isot. 97 (2015) 52

Conclusions

Nuclear Physics can do a lot for radionuclide production

However, **producing the radionuclide is just the first step**, someone has to use it. For that you need:

- 1. Produce it on a **regular basis** with the appropriate **quality** and **quantity**
- Insure that this production capability will stay available for several years (small animals studies and clinical trials take time)
- 3. Produce it as an Active Pharmaceutical Ingredient
 → A quality assurance program helps

Thank you for your attention

The ARRONAX project is supported by: the Regional Council of Pays de la Loire the Université de Nantes the French government (CNRS, INSERM) the European Union.

This work has been, in part, supported by a grant from the French National Agency for Research called "Investissements d'Avenir", Equipex Arronax-Plus noANR-11-EQPX-0004, Labex IRON noANR-11-LABX-18-01 and Isite NExT no ANR-16-IDEX-0007. Part of this work was performed within the framework of EU Horizon 2020 project RIA-ENSAR2 (654 002).

MEDICIS-PROMED has been supported by a Marie Skłodowska-Curie innovative training network fellowship of the European commission's horizon 2020 program under contract number 642889

