

Recent experimental studies of shell evolution in exotic nuclei

Alexandra Gade Professor of Physics Michigan State University

Outline

- Introduction
 - Pointing to recent highlights in the field (Ca, Ni and Sn)
- In more detail: Evolution of shell structure
 - Spectroscopy of very neutron-rich nuclei II – ⁴²Si (GRETINA @ S800)
 - Spectroscopy of very neutron-rich nuclei I – ⁷⁰Fe (GRETINA @ S800)
 - Brief news on the neighborhood of ⁵⁶Ni (GRETINA@ S800)
- Summary

MICHIGAN STATE

UNIVERSITY

Along Z=20

- Why are the charge radii of the neutron-deficient Ca isotopes so small?
 - A. J. Miller et al., Nature Physics 15, 432 (2019)
- Why do the neutron-rich Ca isotopes have so large charge radii?
 - R. F. Garcia Ruiz et al., Nature Physics 12, 594 (2016)
- How heavy are they?
 - S. Michimasa et al., PRL 121, 022506 (2018)
- Excited states at and beyond N=34, anybody?
 - D. Steppenbeck *et al.*, Nature 502, 207 (2013), J. Lee (2019)
- How many neutrons can *Z*=20 bind?
 - O.B. Tarasov *et al.*, PRL 121, 022501 (2018)

Towards ⁷⁸Ni

 See David Verney's talk on Thursday for the GANIL-based spectroscopy towards ⁷⁸Ni

 0^{+}

MCSM

 0^{+}

Experimental

ം[©]

0

MICHIGAN STATE

UNIVERSITY

 0^{+}

LSSM²⁸

Along Z=50

- Evolution of collectivity in the tin isotopes towards ¹⁰⁰Sn tracked back to an interplay of quadrupole and pairing forces for the $2^+ \rightarrow 0^+$ and $4^+ \rightarrow 2^+$ transitions
- Fantastic experimental work on lifetime measurements following multi-nucleon exchange reactions

M. Siciliano et al., yesterday's talk and arXiv:1905.10313

The menu of examples

- Along magic chains ... informs about the changes in the nuclear structure with isospin
- Very challenging benchmarks for theory are posed by studying regions of rapid structural change
 - Such as the neutron-rich *N*=28 and *N*=40 nuclei

»⁴²Si

»⁷⁰Fe

One-slide teaser – a brief look at recent work around N=Z=28 ⁵⁶Ni

Spectroscopy of ⁴²Si

Is the structure of ⁴²Si understood?

A. Gade,^{1, 2} B. A. Brown,^{1, 2} J. A. Tostevin,³ D. Bazin,^{1, 2} P. C. Bender,^{1, *} C. M. Campbell,⁴ H. L. Crawford,⁴ B. Elman,^{1, 2} K. W. Kemper,⁵ B. Longfellow,^{1, 2} E. Lunderberg,^{1, 2} D. Rhodes,^{1, 2} and D. Weisshaar¹

¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ²Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA ³Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom ⁴Nuclear Science Division, Lawrence Berkeley National Laboratory, California 94720, USA ⁵Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

(Dated: April 23, 2019)

A more detailed test of the implementation of nuclear forces that drive shell evolution in the pivotal nucleus ${}^{42}\text{Si}$ – going beyond earlier comparisons of excited-state energies – is important. The two leading shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which reproduce the low-lying ${}^{42}\text{Si}(2^+_1)$ energy, but whose predictions for other observables differ significantly, are interrogated by the population of states in neutron-rich ${}^{42}\text{Si}$ with a one-proton removal reaction from ${}^{43}\text{P}$ projectiles at 81 MeV/nucleon. The measured cross sections to the individual ${}^{42}\text{Si}$ final states are compared to calculations that combine eikonal reaction dynamics with these shell-model nuclear structure overlaps. The differences in the two shell-model descriptions are examined and linked to predicted low-lying excited 0^+ states and shape coexistence. Based on the present data, which are in better agreement with the SDPF-MU calculations, the state observed at 2150(13) keV in ${}^{42}\text{Si}$ is proposed to be the (0^+_2) level.

Structure of ⁴²Si: A brief history

Present-generation RIB facilities

 Beta-decay half-life of ⁴²Si and particle stability of ⁴³Si → N=28 broken down S. Grevy *et al.*, PLB 594, 252 (2004)

M. Notani et al., PLB 542, 49 (2002)

 Pronounced Z=14 sub-shell gap may prevent ⁴²Si from being deformed

J. Fridmann *et al.*, Nature 435, 922 (2005) J. Fridmann *et al.*, PRC 74, 034313 (2006)

 Finally: 2⁺ at 770(19) keV demonstrates collectivity and breakdown of N=28

B. Bastin et al., PRL 99, 022503 (2007)

New generation facility

 First spectroscopy beyond the first 2⁺ state R_{4/2} ratio claimed to prove deformation

S. Takeuchi et al., PRL 109, 182501 (2012)

At the frontier of experimentation

- Heaviest Si isotope known: ⁴⁴Si
- Lightest *N=28* isotone: ⁴⁰Mg

MICHIGAN STATE

UNIVERSITY

experiment

Structure of ⁴²Si: A brief (shell model) status theory

- Two successful shell-model effective interactions – broadly the same mechanism to produce collective ⁴²Si:
 - Relative to ³⁴Si: reduced Z=14 sub-shell gap due to neutrons filling f_{7/2}
 - Relative to ⁴⁸Ca: removal of protons from d_{3/2} reduces *N=28* gap
 - Quadrupole correlation across these narrowed gaps mutually enhance each other
- In an SU(3)-like scheme: SDPF-U (SDPF-U-Si)

F. Nowacki, & A. Poves, PRC 79, 014310 (2009)

Nuclear Jahn-Teller effect: SDPF-MU

Y. Utsuno et al., PRC 86, 051301(R) (2012)

Interesting observation: RIBF ⁴²Si data hard to reconcile with SM x reaction theory

PHYSICAL REVIEW C 87, 027601 (2013)

Two-proton removal from ⁴⁴S and the structure of ⁴²Si

J. A. Tostevin,^{1,2} B. A. Brown,^{1,3} and E. C. Simpson² ¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ²Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom ³Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA (Received 15 November 2012; published 4 February 2013)

Huh? ... looking at shell model past the first 2⁺

SDPF-U and SDPF-MU could not be more different!

F. Nowacki, & A. Poves, PRC 79, 014310 (2009) Y. Utsuno *et al.*, PRC 86, 051301(R) (2012)

Alex Gade, Colloque GANIL 2019 10

The experiment – One-proton knockout from ⁴³P

- One-proton knockout is a direct reaction → probes the single-particle degree of freedom
- 43P: ground state is 1/2+
 L. A. Riley *et al.*, PRC 78, 011303(R) (2008)
- This means, knockout of sd-shell protons cannot populate $J \ge 4$
- All γ-ray transitions except for the 2743 keV line had been reported in the RIBF two-proton removal experiment

Be(⁴³P,⁴²Si+γ)X at 81 MeV/u

 Gamma rays in GRETINA and projectile-like reaction residues in the S800

Confronting partial cross sections with theory

- SDPF-MU describes the data rather well
 - Suggests that the 2.1 MeV level assigned 4⁺ by Takeuchi *et al.* based on systematics is more likely a 0⁺ state (also most consistent with the two-proton knockout theory study of the RIBF data by Tostevin *et al.*)
- The exceptionally high level density predicted by SDPF-U-Si cannot be supported by the data

MICHIGAN STATE

A. Gade, B.A. Brown, J. A. Tostevin et al., PRL122, 222501 (2019)

Alex Brown's closer look at the shell model level densities

- B(E2) network shows the stark difference in the shell model predictions
 - SDPF-U has a very compressed spectrum relative to MU and predicts interesting low-lying shape/configuration coexistence
 - The neutron wave function decomposition shows the differences between the predicted 0⁺ states. SDPF-MU predicts rather mixed configurations

⁴²Si broader context

- Recent spectroscopy of ⁴⁰Mg at RIBF suggests a level scheme that cannot be easily reconciled with shell-model calculations
- Weak-binding effects are proposed to be at play

H. L. Crawford et al., PRL 122, 052501 (2019)

Now, if one wants to understand weak-binding effect, start from the shell model that works best for the neighboring isotone ⁴²Si: SDPF-MU

MICHIGAN STATE

A. Gade, B.A. Brown, J. A. Tostevin *et al.*, PRL122, 222501 (2019)

Alex Gade, Colloque GANIL 2019 14

Spectroscopy of ⁷⁰Fe

PHYSICAL REVIEW C 99, 011301(R) (2019)

Rapid Communications

Structure of ⁷⁰Fe: Single-particle and collective degrees of freedom

A. Gade,^{1,2} R. V. F. Janssens,³ J. A. Tostevin,⁴ D. Bazin,^{1,2} J. Belarge,^{1,*} P. C. Bender,^{1,†} S. Bottoni,^{5,‡} M. P. Carpenter,⁵ B. Elman,^{1,2} S. J. Freeman,⁶ T. Lauritsen,⁵ S. M. Lenzi,⁷ B. Longfellow,^{1,2} E. Lunderberg,^{1,2} A. Poves,⁸ L. A. Riley,⁹ D. K. Sharp,⁶ D. Weisshaar,¹ and S. Zhu⁵
¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
²Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
³Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA and Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708, USA
⁴Department of Physics University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
⁵Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
⁶School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
⁷Dipartimento di Fisica e Astronomia dell'Università, INFN, Sezione di Padova, I-35131 Padova, Italy
⁸Departament of Physics and Astronomy, Ursinus College, Collegeville, Pennsylvania 19426, USA

(Received 5 August 2018; revised manuscript received 28 September 2018; published 2 January 2019)

Structure of ⁷⁰Fe: Single-particle and collective degrees of freedom

Motivation

Known before?

• (p,2p)

Counts (20 keV/bin)

100

50

MICHIGAN STATE

• RIKEN β decay

⁷⁰Fe

- ⁷⁰Fe is located in between two Island of Inversion, located around N=40, and predicted at N=50
- The shell evolution is driven by singleparticle shifts and QQ interactions
- Interplay of single-particle and collective degrees of freedom poses sensitive benchmark for theory

Counts / 2 keV

gate 866 keV

C. Santamaria et al., PRL 15. 192501 (2015)

483

500

855

Structure of ⁷⁰Fe: Single-particle and collective degrees of freedom

Experiment

- ⁹Be(⁷¹Co,⁷⁰Fe+γ)X at 87 MeV/u; typical
 ⁷¹Co rate: 65/second
- ⁷⁰Fe unambiguously identified in the S800, coincident γ rays event-by-event Doppler reconstructed from GRETINA's interaction points

Results

- Inclusive cross section for the reaction to happen: 11.0(8) mb
- Three γ rays observed, one is new, two agree with previous results
- All three are in coincidence → level scheme established
- A catch Shell model predicts a ⁷¹Co 7/2⁻ ground state and a 1/2⁻ isomer

Structure of ⁷⁰Fe: Single-particle and collective degrees of freedom – crime and punishment

Comparison to theory

- Measured partial cross sections for the population of the individual final states are plotted as function of energy
- Do the same for theory
 - » Reaction theory x spectroscopic factor from shell model
 - » Eikonal reaction theory for one-nucleon knockout
 - » Spectroscopic factors from LNPS-new effective shell model interaction
 - » Do that assuming knockout from 7/2and 1/2- since we don't know ...
- You get what you asked for: A big mess and theory does not look like experiment ... at all

Structure of ⁷⁰Fe: Collective degrees of freedom – for free!

Sensitivity to excited-state lifetimes!

- Spectra taken under 58° and 90° do not line up at the same energies → the different γ-ray transitions are emitted at different velocities, aka the states have different lifetimes and γ-ray emission occurs at different depths in the target
- GEANT simulations reproduce the observed shifts if $\tau(2^+)=120(20)$ ps and $\tau(4^+)=2-4$ ps
 - » Shell model: $\tau(2^+)=81$ ps and $\tau(4^+)=3$ ps
 - » Broad agreement shell model describes the collectivity well

MICHIGAN ST

Structure of ⁷⁰Fe: What is going on? ⁷⁰Fe – will be a formidable benchmark for future calculations

Fact is ...

- LNPS-new describes very well the excitation energies and electromagnetic transition strengths in the region and in ⁷⁰Fe
- What about the spectroscopic factors
 - Shell model predicts more than 100 states below $S_n=5.32 \text{ MeV} \text{adding more relevant}$ configurations outside of the model space would increase that number and the level of fragmentation
- Possible explanation: Spectroscopic strength is more fragmented than present model spaces allow. This would spread the cross section over many states with a little strength each → in the experiment, the weak feeders funnel through the low-lying states and remain unobserved

Pandemonium-like Effect!

The essential decay of pandemonium: A demonstration of errors in complex beta-decay schemes

J. C. Hardy, L. C. Carraz, B. Jonson, and P. G. Hansen, Phys. Lett. 71, 307 (1977)

N=Z=28 56Ni

Recent nucleon-adding and removing transfer/knockout reactions

- Nucleon-adding transfer reactions onto ⁵⁶Ni
- Extracted spectroscopic factors agree with GXPF1A

D. Kahl et al., PLB 797, 134803 (2019)

Summary

- The study of shell evolution has seen highlights along magic chains and in regions of rapid structural change
 - •Two examples for very neutron-rich systems:
 - » ⁴²Si: Discriminating between predictions that could hardly be more different ... or looking beyond the first 2⁺ and excitation energies was key
 - » ⁷⁰Fe: Pandemonium? We did not order that mess ...
 - And brief news on ⁵⁶Ni
- In-beam gamma-ray spectroscopy is a great tool to track the evolution of nuclear structure

Thank you

. and my many collaborators:

Structure of ⁷⁰Fe: Single-particle and collective degrees of freedom

A. Gade,^{1,2} R. V. F. Janssens,³ J. A. Tostevin,⁴ D. Bazin,^{1,2} J. Belarge,^{1,*} P. C. Bender,^{1,†} S. Bottoni,^{5,‡} M. P. Carpenter,⁵ B. Elman,^{1,2} S. J. Freeman,⁶ T. Lauritsen,⁵ S. M. Lenzi,⁷ B. Longfellow,^{1,2} E. Lunderberg,^{1,2} A. Poves,⁸ L. A. Riley,⁹ D. K. Sharp,⁶ D. Weisshaar,¹ and S. Zhu⁵

¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
 ²Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
 ³Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA and Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708, USA
 ⁴Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
 ⁵Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
 ⁶School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
 ⁷Dipartimento di Fisica e Astronomia dell'Università, INFN, Sezione di Padova, I-35131 Padova, Italy
 ⁸Department of Physics and Astronomy, Ursinus College, Collegeville, Pennsylvania 19426, USA

Is the structure of ⁴²Si understood?

A. Gade,^{1, 2} B. A. Brown,^{1, 2} J. A. Tostevin,³ D. Bazin,^{1, 2} P. C. Bender,^{1, *} C. M. Campbell,⁴ H. L. Crawford,⁴ B. Elman,^{1, 2} K. W. Kemper,⁵ B. Longfellow,^{1, 2} E. Lunderberg,^{1, 2} D. Rhodes,^{1, 2} and D. Weisshaar¹

¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ²Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA ³Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom ⁴Nuclear Science Division, Lawrence Berkeley National Laboratory, California 94720, USA ⁵Department of Physics, Florida State University, Tallahassee, Florida 32306, USA (Dated: April 23, 2019)

... and the funding agencies

⁷⁰Fe:

This work was supported by the U.S. National Science Foundation (NSF) under Cooperative Agreement No. PHY-1565546 (NSCL) and Grant No. PHY-1617250 (Ursinus), by the U.S. Department of Energy (DOE) National Nuclear Security Administration under Awards No. DE-NA0003180 and No. DE-NA0000979, and by the DOE-SC Office of Nuclear Physics under Grants No. DE-FG02-08ER41556 (NSCL), No. DE-FG02-97ER41041 (UNC), No. DE-FG02-97ER41033 (TUNL), and No. DE-AC02-06CH11357 (ANL). GRETINA was funded by the DOE, Office of Science. Operation of the array at NSCL was supported by the DOE under Grants No. DE-SC0014537 (NSCL) and No. DE-AC02-05CH11231 (LBNL). J.A.T., S.J.F., and D.K.S. acknowledge support from the Science and Technology Facilities Council (U.K.) Grants No. ST/L005743/1 and No. ST/L005794/1, respectively. We also thank T. J. Carroll for the use of the Ursinus College Parallel Computing Cluster, supported by NSF Grant No. PHY-1607335. A.P. was supported, in part, by MINECO (Spain) Grant No. FPA2014-57196 and the Severo Ochoa Programme No. SEV-2016-0597.

⁴²Si:

This work was supported by the US National Science Foundation (NSF) under Cooperative Agreement No. PHY-1565546 and Grant No. PHY-1811855, by the US Department of Energy (DOE) National Nuclear Security Administration through the Nuclear Science and Security Consortium under award number DE-NA0003180, and by the DOE-SC Office of Nuclear Physics under Grant No. DE-FG02-08ER41556 (NSCL) and DE-AC02-05CH11231 (LBNL). GRETINA was funded by the DOE, Office of Science. Operation of the array at NSCL was supported by the DOE under Grant No. DE-SC0014537 (NSCL) and DE-AC02-05CH11231 (LBNL). J.A.T. acknowledges support from the Science and Technology Facilities Council (U.K.) Grant No. ST/L005743/1. Discussions with A. Poves are acknowledged.

