Recent experimental studies of shell evolution in exotic nuclei

Alexandra Gade
Professor of Physics
Michigan State University
Outline

- **Introduction**
 - Pointing to recent highlights in the field (Ca, Ni and Sn)

- **In more detail: Evolution of shell structure**
 - Spectroscopy of very neutron-rich nuclei II – 42Si (GRETINA @ S800)
 - Spectroscopy of very neutron-rich nuclei I – 70Fe (GRETINA @ S800)
 - Brief news on the neighborhood of 56Ni (GRETINA@ S800)

- **Summary**
Along $Z=20$

- **Why are the charge radii of the neutron-deficient Ca isotopes so small?**

- **Why do the neutron-rich Ca isotopes have so large charge radii?**

- **How heavy are they?**
 - S. Michimasa *et al.*, PRL 121, 022506 (2018)

- **Excited states at and beyond $N=34$, anybody?**

- **How many neutrons can $Z=20$ bind?**
Towards 78Ni

- First spectroscopy of doubly-magic 78Ni
- Spectacular case of shape coexistence proposed with structures that do not decay to each other
- See David Verney’s talk on Thursday for the GANIL-based spectroscopy towards 78Ni

- Evolution of collectivity in the tin isotopes towards 100Sn tracked back to an interplay of quadrupole and pairing forces for the $2^+ \rightarrow 0^+$ and $4^+ \rightarrow 2^+$ transitions
- Fantastic experimental work on lifetime measurements following multi-nucleon exchange reactions
The menu of examples

- Along magic chains … informs about the changes in the nuclear structure with isospin

- Very challenging benchmarks for theory are posed by studying regions of rapid structural change
 - Such as the neutron-rich $N=28$ and $N=40$ nuclei
 - 42Si
 - 70Fe

- One-slide teaser – a brief look at recent work around $N=Z=28$ 56Ni
Spectroscopy of ^{42}Si

Is the structure of ^{42}Si understood?

A. Gade, B. A. Brown, J. A. Tostevin, D. Bazin, P. C. Bender, C. M. Campbell, H. L. Crawford, B. Elman, K. W. Kemper, B. Longfellow, E. Lunderberg, D. Rhodes, and D. Weisshaar

1National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
2Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
3Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
4Nuclear Science Division, Lawrence Berkeley National Laboratory, California 94720, USA
5Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

(Dated: April 23, 2019)

A more detailed test of the implementation of nuclear forces that drive shell evolution in the pivotal nucleus ^{42}Si – going beyond earlier comparisons of excited-state energies – is important. The two leading shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which reproduce the low-lying $^{42}\text{Si}(2^+_1)$ energy, but whose predictions for other observables differ significantly, are interrogated by the population of states in neutron-rich ^{42}Si with a one-proton removal reaction from ^{43}P projectiles at 81 MeV/nucleon. The measured cross sections to the individual ^{42}Si final states are compared to calculations that combine eikonal reaction dynamics with these shell-model nuclear structure overlaps. The differences in the two shell-model descriptions are examined and linked to predicted low-lying excited 0^+ states and shape coexistence. Based on the present data, which are in better agreement with the SDPF-MU calculations, the state observed at 2150(13) keV in ^{42}Si is proposed to be the $(0_{2^+}^+)$ level.
Structure of 42Si: A brief history

- **Present-generation RIB facilities**
 - Beta-decay half-life of 42Si and particle stability of 43Si $\rightarrow N=28$ broken down

 S. Grevy et al., PLB 594, 252 (2004)
 M. Notani et al., PLB 542, 49 (2002)
 - Pronounced $Z=14$ sub-shell gap may prevent 42Si from being deformed

 J. Fridmann et al., PRC 74, 034313 (2006)
 - Finally: 2^+ at 770(19) keV demonstrates collectivity and breakdown of $N=28$

 B. Bastin et al., PRL 99, 022503 (2007)

- **New generation facility**
 - First spectroscopy beyond the first 2^+ state $R_{4/2}$ ratio claimed to prove deformation

 S. Takeuchi et al., PRL 109, 182501 (2012)

- **At the frontier of experimentation**
 - Heaviest Si isotope known: 44Si
 - Lightest $N=28$ isotone: 40Mg

Structure of 42Si: A brief (shell model) status

- Two successful shell-model effective interactions – broadly the same mechanism to produce collective 42Si:
 - Relative to 34Si: reduced $Z=14$ sub-shell gap due to neutrons filling $f_{7/2}$
 - Relative to 48Ca: removal of protons from $d_{3/2}$ reduces $N=28$ gap
 - Quadrupole correlation across these narrowed gaps mutually enhance each other

- In an SU(3)-like scheme: SDPF-U (SDPF-U-Si)

 F. Nowacki, & A. Poves, PRC 79, 014310 (2009)

- Nuclear Jahn-Teller effect: SDPF-MU

 Y. Utsuno et al., PRC 86, 051301(R) (2012)

Interesting observation: RIBF 42Si data hard to reconcile with SM x reaction theory
Huh? … looking at shell model past the first 2^+

SDPF-U and SDPF-MU could not be more different!

F. Nowacki, & A. Poves, PRC 79, 014310 (2009)
Y. Utsuno et al., PRC 86, 051301(R) (2012)
The experiment – One-proton knockout from ^{43}P

- One-proton knockout is a direct reaction \rightarrow probes the single-particle degree of freedom

- ^{43}P: ground state is $1/2^+$

 [Ref. L. A. Riley et al., PRC 78, 011303(R) (2008)]

- This means, knockout of sd-shell protons cannot populate $J \geq 4$

- All γ-ray transitions except for the 2743 keV line had been reported in the RIBF two-proton removal experiment

- $^9\text{Be}(^{43}\text{P},^{42}\text{Si}+\gamma)X$ at 81 MeV/u

- Gamma rays in GRETINA and projectile-like reaction residues in the S800

[Graph showing gamma ray transitions]
Confronting partial cross sections with theory

- SDPF-MU describes the data rather well
 - Suggests that the 2.1 MeV level assigned 4$^+$ by Takeuchi et al. based on systematics is more likely a 0$^+$ state (also most consistent with the two-proton knockout theory study of the RIBF data by Tostevin et al.)

- The exceptionally high level density predicted by SDPF-U-Si cannot be supported by the data

A. Gade, B.A. Brown, J. A. Tostevin et al., PRL122, 222501 (2019)
B(E2) network shows the stark difference in the shell model predictions

- SDPF-U has a very compressed spectrum relative to MU and predicts interesting low-lying shape/configuration coexistence
- The neutron wave function decomposition shows the differences between the predicted 0^+ states. SDPF-MU predicts rather mixed configurations
Recent spectroscopy of ^{40}Mg at RIBF suggests a level scheme that cannot be easily reconciled with shell-model calculations.

Weak-binding effects are proposed to be at play.

Now, if one wants to understand weak-binding effect, start from the shell model that works best for the neighboring isotone ^{42}Si: SDPF-MU.
Spectroscopy of 70Fe

PHYSICAL REVIEW C 99, 011301(R) (2019)

Rapid Communications

Structure of 70Fe: Single-particle and collective degrees of freedom

A. Gade,¹,² R. V. F. Janssens,³ J. A. Tostevin,⁴ D. Bazin,¹,² J. Belarge,¹,* P. C. Bender,¹,⁺ S. Bottoni,⁵,⁺ M. P. Carpenter,⁵ B. Elman,¹,² S. J. Freeman,⁶ T. Lauritsen,⁵ S. M. Lenzi,⁷ B. Longfellow,¹,² E. Lunderberg,¹,² A. Poves,⁸ L. A. Riley,⁹ D. K. Sharp,⁶ D. Weisschaar,¹ and S. Zhu⁵

¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
²Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
³Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
and Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708, USA
⁴Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
⁵Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
⁶School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
⁷Dipartimento di Fisica e Astronomia dell’Università, INFN, Sezione di Padova, I-35131 Padova, Italy
⁸Departamento de Física Teórica e IFT-UAM/CSIC, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
⁹Department of Physics and Astronomy, Ursinus College, Collegeville, Pennsylvania 19426, USA

(Received 5 August 2018; revised manuscript received 28 September 2018; published 2 January 2019)
Structure of 70Fe: Single-particle and collective degrees of freedom

Motivation

- 70Fe is located in between two Island of Inversion, located around $N=40$, and predicted at $N=50$
- The shell evolution is driven by single-particle shifts and QQ interactions
- Interplay of single-particle and collective degrees of freedom poses sensitive benchmark for theory

Known before?

- RIKEN β decay
- $(p,2p)$

A. Gade, EPJ A 51, 118 (2015)

F. Nowacki et al., PRL 117, 272501 (2016)

Experiment

- $^9\text{Be}(^{71}\text{Co}, ^{70}\text{Fe}+\gamma)X$ at 87 MeV/u; typical ^{71}Co rate: 65/second
- ^{70}Fe unambiguously identified in the S800, coincident γ rays event-by-event Doppler reconstructed from GRETINA’s interaction points

Results

- Inclusive cross section for the reaction to happen: 11.0(8) mb
- Three γ rays observed, one is new, two agree with previous results
- All three are in coincidence \rightarrow level scheme established

A catch – Shell model predicts a ^{71}Co $7/2^-$ ground state and a $1/2^-$ isomer
Comparison to theory

- Measured partial cross sections for the population of the individual final states are plotted as function of energy
- Do the same for theory
 - Reaction theory × spectroscopic factor from shell model
 - Eikonal reaction theory for one-nucleon knockout
 - Spectroscopic factors from LNPS-new effective shell model interaction
 - Do that assuming knockout from 7/2- and 1/2- since we don’t know …
- You get what you asked for: A big mess and theory does not look like experiment … at all

A. Gade et al., PRC 99, 011301(R) (2019)

Structure of 70Fe: Single-particle and collective degrees of freedom – crime and punishment
Structure of 70Fe: Collective degrees of freedom – for free!

- Sensitivity to excited-state lifetimes!
 - Spectra taken under 58° and 90° do not line up at the same energies → the different γ-ray transitions are emitted at different velocities, aka the states have different lifetimes and γ-ray emission occurs at different depths in the target
 - GEANT simulations reproduce the observed shifts if $\tau(2^+)=120(20)$ ps and $\tau(4^+)=2-4$ ps
 » Shell model: $\tau(2^+)=81$ ps and $\tau(4^+)=3$ ps
 » Broad agreement – shell model describes the collectivity well
Structure of 70Fe: What is going on?

70Fe – will be a formidable benchmark for future calculations

- Fact is …
 - LNPS-new describes very well the excitation energies and electromagnetic transition strengths in the region and in 70Fe

- What about the spectroscopic factors
 - Shell model predicts more than 100 states below $S_n=5.32$ MeV – adding more relevant configurations outside of the model space would increase that number and the level of fragmentation

- Possible explanation: Spectroscopic strength is more fragmented than present model spaces allow. This would spread the cross section over many states with a little strength each → in the experiment, the weak feeders funnel through the low-lying states and remain unobserved

Pandemonium-like Effect!

John Martin, Paradise Lost 1841

The essential decay of pandemonium: A demonstration of errors in complex beta-decay schemes

A. Gade et al., PRC 99, 011301(R) (2019)
$N=Z=28 \ ^{56}\text{Ni}$

Recent nucleon-adding and removing transfer/knockout reactions

- Nucleon-adding transfer reactions onto ^{56}Ni
- Extracted spectroscopic factors agree with GXPF1A

D. Kahl et al., PLB 797, 134803 (2019)

$^{56}\text{Ni}(d,n)^{57}\text{Cu}$

<table>
<thead>
<tr>
<th>E_{ex} (MeV)</th>
<th>J^π</th>
<th>I</th>
<th>σ_{exp} (mb)</th>
<th>σ_{th} (mb)</th>
<th>$C^2S_{(d,n)}$</th>
<th>C^2S_{SM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.028</td>
<td>5/2(^-)</td>
<td>3</td>
<td>2.00(40)</td>
<td>2.62</td>
<td>0.76(28)</td>
<td>0.75</td>
</tr>
<tr>
<td>1.109</td>
<td>1/2(^-)</td>
<td>1</td>
<td>0.28(6)</td>
<td>0.45</td>
<td>0.62(22)</td>
<td>0.71</td>
</tr>
<tr>
<td>2.398</td>
<td>5/2(^-)</td>
<td>3</td>
<td><0.2</td>
<td>2.61</td>
<td><8\times10(^{-2})</td>
<td>1.8\times10(^{-3})</td>
</tr>
<tr>
<td>2.525</td>
<td>7/2(^-)</td>
<td>3</td>
<td><0.2</td>
<td>14.5</td>
<td>—</td>
<td>3.9\times10(^{-2})</td>
</tr>
</tbody>
</table>

$^{56}\text{Ni}(d,p)^{57}\text{Ni}$

<table>
<thead>
<tr>
<th>E_{ex} (MeV)</th>
<th>J^π</th>
<th>I</th>
<th>σ_{exp} (mb)</th>
<th>σ_{th} (mb)</th>
<th>$C^2S_{(d,p)}$</th>
<th>C^2S_{SM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.768</td>
<td>5/2(^-)</td>
<td>3</td>
<td>2.10(60)</td>
<td>2.77</td>
<td>0.77(31)</td>
<td>0.74</td>
</tr>
<tr>
<td>1.122</td>
<td>1/2(^-)</td>
<td>1</td>
<td>0.50(15)</td>
<td>0.68</td>
<td>0.73(31)</td>
<td>0.69</td>
</tr>
<tr>
<td>2.443</td>
<td>5/2(^-)</td>
<td>3</td>
<td><0.4</td>
<td>2.61</td>
<td><0.1</td>
<td>3\times10(^{-4})</td>
</tr>
<tr>
<td>2.579</td>
<td>7/2(^-)</td>
<td>3</td>
<td>1.24(36)</td>
<td>14.9</td>
<td>8(3)\times10(^{-2})</td>
<td>4.1\times10(^{-2})</td>
</tr>
</tbody>
</table>

$^{56}\text{Ni}(d,p)^{57}\text{Ni}$

- **(a)**
- **(b)**

Alex Gade, Colloque GANIL 2019
The study of shell evolution has seen highlights along magic chains and in regions of rapid structural change

- Two examples for very neutron-rich systems:
 - 42Si: Discriminating between predictions that could hardly be more different … or looking beyond the first 2^+ and excitation energies was key
 - 70Fe: Pandemonium? We did not order that mess …

- And brief news on 56Ni

In-beam gamma-ray spectroscopy is a great tool to track the evolution of nuclear structure
Thank you… and my many collaborators:

Structure of 70Fe: Single-particle and collective degrees of freedom

A. Gade,¹,² R. V. F. Janssens,³ J. A. Tostevin,⁴ D. Bazin,¹,² J. Belarge,¹,* P. C. Bender,¹,‡ S. Bottoni,⁵,‡ M. P. Carpenter,⁵ B. Elman,¹,² S. J. Freeman,⁶ T. Lauritsen,⁵ S. M. Lenzi,⁷ B. Longfellow,¹,² E. Lunderberg,¹,² A. Poves,⁸ L. A. Riley,⁹ D. K. Sharp,⁶ D. Weisshaar,¹ and S. Zhu⁵

¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
²Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
³Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
and Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708, USA
⁴Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
⁵Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
⁶School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
⁷Dipartimento di Fisica e Astronomia dell’Università, INFN, Sezione di Padova, I-35131 Padova, Italy
⁸Departamento de Física Teórica e IFT-UAM/CSIC, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
⁹Department of Physics and Astronomy, Ursinus College, Collegeville, Pennsylvania 19426, USA

Is the structure of 42Si understood?

A. Gade,¹,² B. A. Brown,¹,² J. A. Tostevin,³ D. Bazin,¹,² P. C. Bender,¹,* C. M. Campbell,⁴ H. L. Crawford,⁴ B. Elman,¹,² K. W. Kemper,⁵ B. Longfellow,¹,² E. Lunderberg,¹,² D. Rhodes,¹,² and D. Weisshaar¹

¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
²Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
³Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
⁴Nuclear Science Division, Lawrence Berkeley National Laboratory, California 94720, USA
⁵Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
(Dated: April 23, 2019)
... and the funding agencies

^{70}Fe:

This work was supported by the U.S. National Science Foundation (NSF) under Cooperative Agreement No. PHY-1565546 (NSCL) and Grant No. PHY-1617250 (Ursinus), by the U.S. Department of Energy (DOE) National Nuclear Security Administration under Awards No. DE-NA0003180 and No. DE-NA0000979, and by the DOE-SC Office of Nuclear Physics under Grants No. DE-FG02-08ER41556 (NSCL), No. DE-FG02-97ER41041 (UNC), No. DE-FG02-97ER41033 (TUNL), and No. DE-AC02-06CH11357 (ANL). GRETINA was funded by the DOE, Office of Science. Operation of the array at NSCL was supported by the DOE under Grants No. DE-SC0014537 (NSCL) and No. DE-AC02-05CH11231 (BNL). J.A.T., S.J.F., and D.K.S. acknowledge support from the Science and Technology Facilities Council (U.K.) Grants No. ST/L005743/1 and No. ST/L005794/1, respectively. We also thank T. J. Carroll for the use of the Ursinus College Parallel Computing Cluster, supported by NSF Grant No. PHY-1607335. A.P. was supported, in part, by MINECO (Spain) Grant No. FPA2014-57196 and the Severo Ochoa Programme No. SEV-2016-0597.

^{42}Si:

This work was supported by the US National Science Foundation (NSF) under Cooperative Agreement No. PHY-1565546 and Grant No. PHY-1811855, by the US Department of Energy (DOE) National Nuclear Security Administration through the Nuclear Science and Security Consortium under award number DE-NA0003180, and by the DOE-SC Office of Nuclear Physics under Grant No. DE-FG02-08ER41556 (NSCL) and DE-AC02-05CH11231 (BNL). GRETINA was funded by the DOE, Office of Science. Operation of the array at NSCL was supported by the DOE under Grant No. DE-SC0014537 (NSCL) and DE-AC02-05CH11231 (BNL). J.A.T. acknowledges support from the Science and Technology Facilities Council (U.K.) Grant No. ST/L005743/1. Discussions with A. Poves are acknowledged.