Sept. 09-13, 2019
Colloque GANIL

How the octupole structure determines the fission asymmetry

Guillaume SCAMPS

Collaboration : C. Simenel
Motivation: to understand the shell effects on fission

Empirical behaviour of actinide nuclei

Data from D. A. Brown et al., Endf/b-viii.0, Nucl. Data Sheets 148, 1 (2018), (spontaneous and thermal neutron-capture).
Systematic comparison for actinide
Empirical behavior of actinide nuclei

C. Bückstiegel et al. / Nuclear Physics A 802 (2008) 12–25

Motivation
How can we understand this behaviour? Interplay between structure and reactions?
Mean-field dynamics with pairing

TDHF+BCS
- Based on TDHFB with the approximation: $\Delta_{ij} = \delta_{ij}\Delta_i$
- Initialisation from ev8 (HF+BCS)
- Evolution:

 \[i\hbar \frac{d\varphi_i}{dt} = (\hat{\mathcal{H}}_{MF} - \epsilon_i)\varphi_i \]
 \[i\hbar \frac{dn_i}{dt} = \Delta^*_i \kappa_i - \Delta_i \kappa^*_i \]
 \[i\hbar \frac{d\kappa_i}{dt} = \kappa_i(\epsilon_i - \epsilon_{\bar{i}}) + \Delta_i(2n_i - 1) \]

Details of the calculation
- Skyrme functionnal Sly4d
- Surface pairing interaction
- $\Delta x = 0.8$ fm; $\Delta t = 1.5 \times 10^{-24}$ s
- Lattice: $L_x \times L_y \times 2L_z = 40 \times 19.2 \times 19.2$ fm3
Why does we need pairing?

Fission barrier: ^{258}Fm

Why does we need pairing?

Fission barrier: $^{258}_{\text{Fm}}$

$E [\text{MeV}]$

$R [\text{fm}]$

TDHF

TDHF + BCS

Why does we need pairing?

Fission barrier: ^{258}Fm

Influence of pairing on fission process
Influence of pairing on fission process
New systematic study

First: CHF+BCS

Example: 240Pu

Second: TDHF+BCS
New systematic study

First: CHF+BCS

Example: ^{240}Pu

Second: TDHF+BCS
New systematic study

First: CHF+BCS

Example: ^{240}Pu

Second: TDHF+BCS
TDHF+BCS systematics results

TDHF+BCS

Comparison with experimental data
The TDHF+BCS calculation reproduces well the \(Z = 54 \) behavior. But why?
Nucleon localization function

Fermion localization function

\[C_{q\sigma}(\mathbf{r}) = \left[1 + \left(\frac{\tau_{q\sigma} \rho_{q\sigma} - \frac{1}{4} |\nabla \rho_{q\sigma}|^2 - j_{q\sigma}^2}{\rho_{q\sigma} \tau_{q\sigma}^{TF}} \right)^2 \right]^{-1} \]

Physical meaning :
\[C \in [0 : 1] \]
\[C_{q\sigma}(\mathbf{r}) = 1 \] Probability to find another particle with the same \(q \) and \(\sigma \) very low.
\[C_{q\sigma}(\mathbf{r}) = 0.5 \] Limit of uniform-density Fermi gas.

Mask function :
\[\rightarrow \frac{C_{q\sigma}(\mathbf{r}) \rho_{q\sigma}}{\rho_{q\sigma}^{\text{max}}} \]
Nucleon localization function

Fermion localization function

\[C_{q\sigma}(r) = \left[1 + \left(\frac{\tau_{q\sigma} \rho_{q\sigma} - \frac{1}{4} |\nabla \rho_{q\sigma}|^2 - j_{q\sigma}^2}{\rho_{q\sigma} \tau_{q\sigma}^{TF}} \right) \right]^{-1} \]

Physical meaning:
\[C \in [0 : 1] \]
\[C_{q\sigma}(r) = 1 \text{ Probability to find another particle with the same } q \text{ and } \sigma \text{ very low.} \]
\[C_{q\sigma}(r) = 0.5 \text{ Limit of uniform-density Fermi gas.} \]

Mask function:
\[\rightarrow \frac{C_{q\sigma}(r) \rho_{q\sigma}}{\rho_{q\sigma}^{max}} \]

Nucleon localization function

Fermion localization function

\[C_{q\sigma}(r) = \left[1 + \left(\frac{\tau_{q\sigma} \rho_{q\sigma} - \frac{1}{4} \rho_{q\sigma} \nabla \rho_{q\sigma}^2 - j_{q\sigma}^2}{\rho_{q\sigma} T_{TF}^{q\sigma}} \right)^2 \right]^{-1} \]

Physical meaning:
- \(C \in [0 : 1] \)
- \(C_{q\sigma}(r) = 1 \) Probability to find another particle with the same \(q \) and \(\sigma \) very low.
- \(C_{q\sigma}(r) = 0.5 \) Limit of uniform-density Fermi gas.

Mask function:

\[\rightarrow \frac{C_{q\sigma}(r) \rho_{q\sigma}}{\rho_{q\sigma}^{max}} \]
Example of ^{240}Pu
Example of ^{240}Pu
Example of ^{240}Pu
Example of ^{240}Pu
Hypothesis

The octupole shell effects are important in the fission fragment
Other systems
Other systems
Why the fragments have octupole deformation?

Similar effect on fusion reaction

$^{40}\text{Ca} + ^{40}\text{Ca}, \ E3^- = 3.7 \text{ MeV}$

\[
\begin{align*}
t &= 2.25 \text{ zs} \\
D &= 11.08 \text{ fm}
\end{align*}
\]

\[
\begin{align*}
t &= 2.5 \text{ zs} \\
D &= 10.56 \text{ fm}
\end{align*}
\]

\[
\begin{align*}
t &= 2.75 \text{ zs} \\
D &= 10.54 \text{ fm}
\end{align*}
\]

\[
\begin{align*}
t &= 3 \text{ zs} \\
D &= 10.18 \text{ fm}
\end{align*}
\]

$^{56}\text{Ni} + ^{56}\text{Ni}, \ E3^- = 7.5 \text{ MeV}$

\[
\begin{align*}
t &= 2 \text{ zs} \\
D &= 11.26 \text{ fm}
\end{align*}
\]

\[
\begin{align*}
t &= 2.3 \text{ zs} \\
D &= 10.98 \text{ fm}
\end{align*}
\]

\[
\begin{align*}
t &= 2.6 \text{ zs} \\
D &= 11.10 \text{ fm}
\end{align*}
\]

\[
\begin{align*}
t &= 2.9 \text{ zs} \\
D &= 10.72 \text{ fm}
\end{align*}
\]

Why the fragments have octupole deformation?

Similar effect on fusion reaction

$^{40}\text{Ca} + ^{40}\text{Ca}, \ E3^- = 3.7 \text{ MeV}$

$t=2.25 \text{ zs} \\
D=11.08 \text{ fm}$

$t=2.5 \text{ zs} \\
D=10.56 \text{ fm}$

$t=2.75 \text{ zs} \\
D=10.54 \text{ fm}$

$t=3 \text{ zs} \\
D=10.18 \text{ fm}$

$^{56}\text{Ni} + ^{56}\text{Ni}, \ E3^- = 7.5 \text{ MeV}$

$t=2 \text{ zs} \\
D=11.26 \text{ fm}$

$t=2.3 \text{ zs} \\
D=10.98 \text{ fm}$

$t=2.6 \text{ zs} \\
D=11.10 \text{ fm}$

$t=2.9 \text{ zs} \\
D=10.72 \text{ fm}$

Octupole deformation systematics

Skyrme Skm*.

Gogny D1S

Results from systematic calculation

In both calculations, the region $Z \approx 56$, $N \approx 88$ is favorable for octupole deformation.

Experimental results

144Ba is found to be octupole in its groud state. Burcher et al. PRL 116 (2016).
Octupole deformation systematics

Results from systematic calculation
In both calculations, the region $Z \simeq 56$, $N \simeq 88$ is favorable for octupole deformation.

Experimental results
144Ba is found to be octupole in its ground state. Burcher et al. PRL 116 (2016).
Constraint HF+BCS octupole deformation with Sly4d

Result from constraint calculation of the heavy fragment

The gain in energy due to the octupole softness drives the fission to the $Z \approx 54$
Structure, ^{144}Ba, $Z=56$, $N=88$

$Q_2 - Q_3$ potential energy surface

Single particle energy

![Graph showing the potential energy surface and single particle energy levels for ^{144}Ba](image-url)
Structure

Single particle energies

Experimental results

C. Böckstiegel et al./Nuclear Physics A 802 (2008) 12–25

Position in Z

Position in N

Mass number
We need Z and N identification pre-evaporation → VAMOS at GANIL (see next talk by Diego Ramos).
Deformation energy at the scission. Simple scission point model

\[E(N, Z) = E_{\beta^3=0.35}(N, Z) + E_{\beta^2=0.8}(N_{\text{tot}} - N, Z_{\text{tot}} - Z) + \epsilon^2 \frac{Z(Z_{\text{tot}} - Z)}{D_{\text{sc}}} \]

With \(D_{\text{sc}} = 17 \text{ fm} \). On the map, \(E(N, Z) - E_{\text{min}} \) is shown. For \(^{240}\text{Pu}\), \(N_{\text{tot}} = 146 \) and \(Z_{\text{tot}} = 94 \)

The energies have been calculated with the CHF+BCS theory Sly4d
Identification method with the nucleon localisation function

This method assumes that the pre-fragments have reflexion symmetry.
Identification with density

Green contour line: density of a 144Ba with a constraint $\beta_3=0.42$
Red contour line: density of a fissioning 258Fm (asymmetric mode)
Identification with nucleon localisation function

Top: NLF of a 144Ba with a constraint $\beta_3 = 0.42$
Bottom: NLF of a fissioning 258Fm (asymmetric mode)
Identification with nucleon localisation function
Identification method with octupole degree of freedom

Identification of the fragments as a function of time for the fission of ^{258}Fm

All of the systems are identified as ^{144}Ba with different β_3 values (resp. 0.14, 0.39, 0.39 and 0.42)
Identification method with octupole degree of freedom

Identification of the fragments at the scission for the different elements.

All systems are identified as 144Ba with different β_3 values (resp. 0.28, 0.28, 0.27 and 0.44)
Conclusion

Mechanism

- The Nucleus-Nucleus interaction at the scission configuration favors the octupole shapes
- Shell structure favors octupole shape in the region $Z \approx 52-56$, $N \approx 84-88$
- Actinide fission fragments are driven in the region $Z \approx 54$, $N \approx 86$

Similar effect for other systems?

P. A. Butler.

Experimental data of ^{180}Hg

Experimental data of ^{178}Pt

(a) $TKE_{\text{high}}^{\text{mass}}$ vs Counts
(b) TKE_{mean} vs Mass (amu)
(c) TKE_{low} vs Mass (amu)

^{178}Pt

$N=56$
$N=50$
$Z=34$
$Z=28$

exp.
sym.
Similar effect of the octupole deformation?
CHF + BCS calculation
Comparison with experimental data

and the fission-fragment mass is shown in Fig. 4. The mass distribution is clearly asymmetric, with the most probable heavy and light masses of $A_H = 100(1)$ and $A_L = 80(1)$, having a width of $\sigma = 4.0(3)$ amu. The most probable Z values of the heavy and light fission fragments are deduced to be $Z_H = 44(2)$ and $Z_L = 36(2)$, respectively, assuming that the N/Z ratio of the parent nucleus 180Hg is preserved in the fission fragments. Thus, the most abundantly produced fission fragments are 100Ru and 80Kr and their neighbors. Although 75% of the fission events are
Single-particle energies in the heavy fragment

Structure of ^{100}Ru ($Z=44$ and $N=56$)

Structure of pre-fragment (Z=34 and N=44)
CHF+BCS calculations : Hg isotopic chain
Conclusion

The fission process magnifies the octupole shell structure
Thank you
Comparison TDHFB - TDHF+BCS

TDHFB
- **Quasi-particles**: \(|\omega_\alpha\rangle = (U_\alpha V_\alpha)\)
- **Evolution**: \(i\hbar \frac{d|\omega_\alpha\rangle}{dt} = (\frac{h}{\Delta} \Delta^* - h^* h) |\omega_\alpha\rangle\)

TDHF+BCS
- Based on TDHFB with the approximation: \(\Delta_{ij} = \delta_{ij} \Delta_i\)
- **Evolution**: \(i\hbar \frac{d\varphi_i}{dt} = (\hat{h}_{MF} - \epsilon_i) \varphi_i\)

 \[
 i\hbar \frac{dn_i}{dt} = \Delta_i^* \kappa_i - \Delta_i \kappa_i^* \\
 i\hbar \frac{d\kappa_i}{dt} = \kappa_i (\epsilon_i - \epsilon_i^*) + \Delta_i (2n_i - 1)
 \]

Theoretical difference
- **Numerical cost**: TDHFB requires 1000 times more numerical resources
- **Treatment of continuum states**: BCS gas problem
- **Continuity equation**
- **Number of pairing degrees of freedom** (HFB \(\Delta(r)\), BCS: \(\Delta_{i\bar{i}}\))
- **Spatial dependence of the pairing correlation**
Comparison for fission of ^{240}Pu

<table>
<thead>
<tr>
<th>S no.</th>
<th>η</th>
<th>E^*</th>
<th>E_n</th>
<th>q_{zz}</th>
<th>q_{zzz}</th>
<th>t_{SS}</th>
<th>TKE_{syst}</th>
<th>TKE</th>
<th>A_L^{syst}</th>
<th>A_L</th>
<th>N_L^{syst}</th>
<th>N_L</th>
<th>Z_L^{syst}</th>
<th>Z_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0.75</td>
<td>8.05</td>
<td>1.52</td>
<td>1.78</td>
<td>-0.742</td>
<td>14419</td>
<td>177.27</td>
<td>182</td>
<td>100.55</td>
<td>104.0</td>
<td>61.10</td>
<td>62.8</td>
<td>39.45</td>
<td>41.2</td>
</tr>
<tr>
<td>S2</td>
<td>0.5</td>
<td>7.91</td>
<td>1.38</td>
<td>1.78</td>
<td>-0.737</td>
<td>4360</td>
<td>177.32</td>
<td>183</td>
<td>100.56</td>
<td>106.3</td>
<td>60.78</td>
<td>64.0</td>
<td>39.78</td>
<td>42.3</td>
</tr>
<tr>
<td>S3</td>
<td>0</td>
<td>8.08</td>
<td>1.55</td>
<td>1.78</td>
<td>-0.737</td>
<td>14010</td>
<td>177.26</td>
<td>180</td>
<td>100.55</td>
<td>105.5</td>
<td>60.69</td>
<td>63.6</td>
<td>39.81</td>
<td>41.9</td>
</tr>
<tr>
<td>S4</td>
<td>0</td>
<td>6.17</td>
<td>-0.36</td>
<td>2.05</td>
<td>-0.956</td>
<td>12751</td>
<td>177.92</td>
<td>181</td>
<td>103.9</td>
<td>62.6</td>
<td>41.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table — TDHF+BCS results for ^{240}Pu

<table>
<thead>
<tr>
<th>#</th>
<th>Q_0 [b]</th>
<th>E_0^* [MeV]</th>
<th>T_{fis} [fm/c]</th>
<th>Z_L</th>
<th>N_L</th>
<th>TKE [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.4</td>
<td>1.46</td>
<td>6480</td>
<td>40.21</td>
<td>60.77</td>
<td>171.5</td>
</tr>
<tr>
<td>2</td>
<td>46.7</td>
<td>0.8</td>
<td>4830</td>
<td>40.83</td>
<td>62.68</td>
<td>181.8</td>
</tr>
<tr>
<td>3</td>
<td>50.5</td>
<td>-1.16</td>
<td>26970</td>
<td>42.2</td>
<td>64.83</td>
<td>181.8</td>
</tr>
<tr>
<td>4</td>
<td>53.0</td>
<td>-2.13</td>
<td>6750</td>
<td>41.39</td>
<td>63.05</td>
<td>177.9</td>
</tr>
<tr>
<td>5</td>
<td>56.8</td>
<td>-3.5</td>
<td>4800</td>
<td>40.99</td>
<td>62.85</td>
<td>177.2</td>
</tr>
<tr>
<td>6</td>
<td>59.3</td>
<td>-4.3</td>
<td>5400</td>
<td>40.45</td>
<td>62.17</td>
<td>178.4</td>
</tr>
<tr>
<td>7</td>
<td>63.1</td>
<td>-5.31</td>
<td>6630</td>
<td>39.55</td>
<td>59.58</td>
<td>162.7</td>
</tr>
<tr>
<td>8</td>
<td>71.9</td>
<td>-7.8</td>
<td>1020</td>
<td>41.8</td>
<td>63.28</td>
<td>179.9</td>
</tr>
</tbody>
</table>