

Progress in the measurements of β-v correlation coefficient in nuclear β decays using LPCTrap
R. Combe, M. Benali, P. Delahaye,
X. Fléchard, E. Liénard, O. Naviliat-Cuncic,
G. Quéméner, N. Severijns, J-C Thomas
XXIst Colloque GANIL - 09/12/2019

Overview

- Theory
- State of the art
- LPCTrap
- LPCTrap@GANIL
- Simulations
- Latest results

Theory

• Nuclear β-decay:

Theory

• Pure Gamov-Teller:
$$a_{GT} = \frac{|C_V|^2 + |C_V'|^2 - |C_S|^2 - |C_S'|^2}{|C_V|^2 + |C_V'|^2 + |C_S|^2 - |C_S'|^2}$$

• Pure Fermi: $a_F = -\frac{1}{3} \frac{|C_A|^2 + |C_A'|^2 - |C_T|^2 - |C_T'|^2}{|C_A|^2 + |C_A'|^2 + |C_T|^2 - |C_T'|^2}$

• Standard Model = Vector-Axial theory:

•
$$C_{S,T} = 0$$
, $C_i = C'_i$

•
$$a_{GT} = -1/3$$
 , $a_F = +1$

Adapted from M. Burkey: Searching For Tensor Currents In The Weak Interaction Using Lithium-8 Decay, PhD University of Chicago

LPCTrap

- Transparent Paul Trap:
 - Three pairs of electrodes:
 - RF electrodes
 - Injection/extraction electrodes
 - Field correction electrodes
- β-Telescope:
 - DSSD + plastic scintillator
- Recoil Ion Detector:
 - -2kV acceleration grid + 250V focusing lens + -4kV polarized MCP

P. Delahaye arXiv:1810.09246

LPCTrap @ GANIL

C. Couratin, et al.: Phys. Rev. Lett. 108, 243201 (2012)

3000

experiment

C. Couratin et al., Phys. Rev. A 88, 041403(R) (2013)

Good production rate : 3.5 10⁷ ions/s @ SPIRAL

Neutral daughter nucleus + multiple charge states

- High $Q_{\beta} = 2.28$ MeV but high daughter mass \rightarrow Low T_{RImax} = 450 eV
- Mirror transition
- $^{35}Ar^+ \rightarrow ^{35}Cl (2011-2012):$

 - 98% GS \rightarrow GS

Three nuclei/ions used:

Reasonable $T_{1/2} = 1.775$ s

LPCTrap @ GANIL

Low $Q_{\beta} = 961 \text{ keV} \rightarrow \text{Low } T_{\text{RImax}} = 200 \text{ eV}$ High production rate $\approx 3 \ 10^8$ ions/s @ SPIRAL

Three nuclei/ions used:

 $^{19}\text{Ne}^+ \rightarrow ^{19}\text{F}$ (2013):

Mirror transition

Long T_{1/2} = 17.26 s

• 99.988% GS→GS

Few charge states (F^{+/2+/3+/4+})

X. Fabian *et al*, Phys. Rev. A 97, 023402 (2018)

Simulations

- Previous results dominated by two systematics:
 - Cloud temperature
 - Beta scattering
- New software developed to answer both:
 - Clouda (cloud temperature)
 - Bayeux (β-scattering)
 - + new Data analysis

Table 1. Dominant sources of systematic error, systematic uncertainties and impact on the error of $a_{\beta v}$. The last column indicates the method used to estimate the parameters.

Source	Uncertainty	$\Delta a_{\beta v}(\times10^{-3})$	Method
Cloud temperature	6.5%	6.8	Off-line measurement
θx_{MCPPSD}	0.003 rad	0.1	Present data
θy_{MCPPSD}	0.003 rad	0.1	Present data
MCPPSD offset (x, y)	0.145 mm	0.3	Present data
MCPPSD calibration	0.5%	1.3	Present data
d _{DSSSD}	0.2 mm	0.3	Present data
$E_{ m solit}$	see text	0.8	Present data
Esi	10%	0.8	GEANT4
'Accidentale' and 'out trap'	See the text	0.9	Present data
β scattering	10%	1.9	GEANT4
Shake-off	0-0.05	0.6	Theoretical calculation
$V_{\rm RF}$	2.5%	1.7	Off-line measurement
Total		7.5	

X. Fléchard *et al* 2011 *J. Phys. G: Nucl. Part. Phys.* **38** 055101

Ion cloud simulation

• Clouda software:

- Simulation of the ion cloud dynamics
- Massively parallel simulation of individual ions on GPU
- Trapping field + N-Body space charge considered

X. Fabian: Precision measurement in the weak interaction framework: development of realistic simulations for the LPCTrap device installed at GANIL, PhD University of Caen

Tracking

- Bayeux software:
 - Simulation of the ions and electrons propagation in the LPCTrap electric field
 - Built-in β-decay generator with shake-off
 - RF and static electric field

Data analysis

- Two phase analysis:
 - Python script for data reading and calibration
 - ROOT macros for fitting
- Systematics analyzed:
 - Buffer gas temperature
 - DSSD and MCP shift
 - Scintillator response function

Latest results

- Clouda software:
 - Good simulation of the dynamics of ions
 - Good reproduction of:
 - cooling time
 - cloud spatial shift
 - space charge effect

Latest results

- Bayeux software:
 - Simulation of TOF measurement
 - Comparison with
 experimental data
 - Problem: not sensible enough to a_{βν} because too thin peaks yet
 - $\chi^2_{-1/3}$ /NDF = 6,65±0,02
 - $\chi^2_{-0,3}$ /NDF = 6,67±0,01

Conclusion and prospective

- Data analysis currently on-going
- ⁶He data to be analyzed before the end of the year
- ³⁵Ar and ¹⁹Ne data to be analyzed before the end of 2020
- Measurement campaign of β-scattering inside LPCTrap to improve the systematics
- Experimental or theorical determination of He+H₂ crosssection
- New beams at SPIRAL: more mirror nuclei: ²¹Na, ²³Mg, ³³Cl, ³⁷K

Thank you for your attention

This work is funded by Région Normandie

XXIst Colloque GANIL – 09/12/2019 – Rodolphe Combe

 $N_{ions} = 4080^{*}e^{-t/1e6}$

$$\begin{aligned} \epsilon a_{\beta\nu} &= |M_F|^2 \left(|C_V|^2 + |C_V'|^2 - |C_S|^2 - |C_S'|^2 \right) \\ &- \frac{1}{3} |M_{GT}|^2 (|C_A|^2 + |C_A'|^2 - |C_T|^2 - |C_T'|^2) \\ \text{with } \epsilon &= |M_F|^2 \left(|C_V|^2 + |C_V'|^2 + |C_S|^2 + |C_S'|^2 \right) \\ &- \frac{1}{3} |M_{GT}|^2 (|C_A|^2 + |C_A'|^2 + |C_T|^2 + |C_T'|^2) \end{aligned}$$

For b close to 0, the effectively measured parameter is $\tilde{a} = \frac{a}{1+\langle b' \rangle}$ with $b' = \frac{m_e}{E_e} b$

Hamiltonian of β decay:

$\hat{\mathbf{H}} = \frac{G_F}{\sqrt{2}} \sum_{i=V,A,S,T,P} \left(\overline{\psi_P} O_i \psi_n \right) \left(\overline{\psi_e} O^i (C_i + C'_i \gamma^5) \psi_\nu \right) + h.c.$