

Determination of Photoneutron Cross Sections for ¹⁶⁵Ho Using Direct Neutron-Multiplicity Sorting

Mateusz Krzysiek

21st Colloque GANIL 2019 Strasbourg, September 9th-13th 2019

Systematics of the photonuclear C.S. measurements

- Most of the photoneutron cross section measurements were performed in period 1962 – 1986 using quasi-monochromatic annihilation photons using positron in flight annihilation at two major facilities:
 - Saclay (France)
 - Lawrence Livermore National Laboratory (USA)
- **L**arge discrepancies in (γ, xn) c.s. measured at the two facilities:
 - (γ , 1n) c.s. are generally noticeably larger at Saclay than at Livermore
 - (γ , 2n) c.s. are generally larger at Livermore than at Saclay.

Coordinated Research Project on Photonuclear Data and Photon Strength Functions

Approved in July 2015; Code F41032; Duration 2016-2020

Importance of photonuclear data

- radiation shielding and radiation transport analyses
- o calculation of absorbed does in the human body during radiotherapy
- o activation analyses, safeguards and inspection technologies
- nuclear waste transmutation
- fission and fusion reactor technologies
- o astrophysical nucleosynthesis

Main objective of new CRP

- update the Photonuclear Data Library (1999)
- o generate Reference Database for Photon Strength Functions

Specific Research Objectives

- Measure photonuclear cross-section data where needed
- o Update existing evaluations and evaluate new photonuclear data
- Measure photon strength functions where needed
- Compile, assess and evaluate existing photon strength function data
- Develop and use theoretical tools to make recommendations and extrapolations to mass regions where no data exist
- Propose new measurements where needed

PHOENIX Collaboration

(Photo-excitation and neutron emission cross (x) sections)

Experimental setup and method

Eγ

- energy calibration of electron beam Maximum γ -ray beam energy
- average energy of incident γ-ray beam good knowledge of incident γ-ray beam spectra

interactions

- reaction neutrons recorded with a flat efficiency 4pi neutron detector
- detection efficiency calibration and simulation
- RingRatio method of obtaining the reaction neutron average energy

incident photons

- Flux monitor large volume 8" x 12" Nal(Tl) detector
- For high-energy and pulsed γ-ray beams Pile-up method
- # photons above S_n good knowledge of incident γ -ray beam spectra

target nuclei

- good knowledge of chemical and isotopical composition
- mass measurement
- transverse surface measurement (4, and 8.14 mm thick targets were used)

γ-ray beam production

Continuous Compton photon spectrum is produced

- Head on collisions (180° collisions)
- Laser and electron beam are unsynchronized

γ-ray beam collimation

Quasi-monochromatic photon beam is produced

$$E_{\gamma} < S_{2n} / max. 38 MeV /$$

Nd:YVO₄ (Inazuma) laser Ist harmonic (λ = 1064 nm; power = 40 W)

 $E_{\gamma} > S_{2n} / max. 74 MeV /$

Nd:YVO₄ (Talon) laser IInd harmonic $(\lambda = 532 \text{ nm}; \text{ power} = 20 \text{ W})$

How do we know the absolute energy of the γ -ray beams?

Laser photon energy – given by atomic transitions in the active medium of the laser Electron beam energy – calibrated (10^{-5} uncertainty) using low energy γ -ray beams generated with a large wavelength ($10.6 \mu m$) CO₂ laser

Incident γ-beam spectra

Incident γ-beam spectra

¹⁶⁵Ho(γ,xn)

Number of incident photons on target

Counts

Target irradiation and neutron detection

Direct neutron multiplicity sorting

Let us consider (γ , xn) reactions with x = 1, 2, 3.

If we can measure the number of the (γ , xn) reactions N_x, we can determine the cross sections σ (γ , xn): N₁ = N_{γ}N_T σ (γ , 1n)

We don't measure the number of reactions but number of coincident neutrons N_s, N_d, N_t

Time between consecutive γ -ray bunches \approx neutron moderation time

- 1 ms laser pulsing comparable to the moderation time of neutrons inside the polyethylene block
- 20 ms Beam ON / 80 ms Beam OFF data for background subtraction
- 1 γ -ray bunch generates no more than 1 reaction \rightarrow low reaction rates required

Direct neutron multiplicity sorting

Let us consider (γ , xn) reactions with x = 1, 2, 3.

If we can measure the number of the (γ, xn) reactions N_x , we can determine the cross sections $\sigma(\gamma, xn)$: $N_1 = N_\gamma N_T \sigma(\gamma, 1n)$ $N_1 = N_1 N_1 \sigma(\gamma, 2n)$

$$N_{2} = N_{\gamma}N_{T}\sigma(\gamma, 2n)$$
$$N_{3} = N_{\gamma}N_{T}\sigma(\gamma, 3n)$$

We don't measure the number of reactions but number of coincident neutrons N_s, N_d, N_t

Single neutron events

$$N_{s} = N_{1} \cdot \varepsilon(E_{1}) + N_{2} \cdot C_{1}^{2} \cdot \varepsilon(E_{2}) \cdot (1 - \varepsilon(E_{2})) + N_{3} \cdot C_{1}^{3} \cdot \varepsilon(E_{3}) \cdot (1 - \varepsilon(E_{3}))^{2}$$

Double neutron events

$$N_d = N_2 \cdot \varepsilon(E_2)^2 + N_3 \cdot C_2^3 \cdot \varepsilon(E_3)^2 \cdot (1 - \varepsilon(E_3)) \qquad \varepsilon(E): \text{detection efficiency}$$

Triple neutron events

$$N_t = N_3 \cdot \varepsilon(E_3)^3$$

Solve the system of equations \Rightarrow N₁, N₂, N₃

Problem: can not estimate $\varepsilon(E_1)$, $\varepsilon(E_2)$, $\varepsilon(E_3)$

Solution? Flat efficiency neutron detector!

 $\frac{(\gamma, 3n) \text{ neutrons:}}{3 \text{ neutrons detected:}}$ 3 neutrons detected: ε³ = 6.4% 2 neutron detected: ε² (1- ε) = 9.6% Only one neutron detected: ε(1- ε)² = 14.4%

H. Utsunomiya et al., NIM A 871 (2017) 135–141

Number of 1, 2, 3 and 4 neutron coincidence events

Neutron moderation time curves for coincidences of 1-4 neutrons.

¹⁶⁵Ho(γ,xn) reactions

for E_{γ}^{max} = 43.2 MeV

1)
$$N_j = \sum_{i=j}^m {}_i C_j \cdot R_i \cdot \varepsilon^j (1-\varepsilon)^{i-j}$$

1) $N_j = \sum_{i=j}^m {}_i C_j \cdot R_i \cdot \varepsilon^j (1-\varepsilon)^{i-j}$ Solve the system of equations $\Rightarrow \mathbf{R}_{\mathbf{x}}$

1)
$$N_j = \sum_{i=j}^m {}_i C_j \cdot R_i \cdot \varepsilon^j (1-\varepsilon)^{i-j}$$
 Solve the system of equations $\Rightarrow R_x$

2)
$$\sigma_{\gamma x n}^{\text{mono}} = \frac{R_x}{N_t N_\gamma \xi f_x}$$

111

 $R_x = # (\gamma, xn)$ induced reactions $N_t = #$ target nuclei / unit surface $N_\gamma = #$ incident γ -rays on the target $\xi =$ thick target correction factor $f_x =$ fraction of photons above S_{xn}

1)
$$N_j = \sum_{i=j}^m {}_i C_j \cdot R_i \cdot \varepsilon^j (1-\varepsilon)^{i-j}$$
 Solve the system of equations $\Rightarrow R_x$

 $R_x = #(\gamma, xn)$ induced reactions $\frac{R_{x}}{\gamma x n} = \frac{R_{x}}{N_{t} N_{\gamma} \xi f_{x}}$ $N_{t} = \# \text{ target nuclei / unit surface}$ $N_{\gamma} = \# \text{ incident } \gamma \text{ -rays on the target}$ ξ = thick target correction factor $f_x = fraction of photons above S_{xn}$

Deconvolution for incident photon spectra

 (γ, xn) cross sections to be unfolded using an iterative method of reproducing the monochromatic cross sections by folding a trial cross section with the incident y spectrum.

Partial photoneutron cross sections - unfolded

γ + ¹⁶⁵Ho

Saclay Bergere et al., (1968) Livermore Berman et al., (1969) Present results - preliminary

Partial photoneutron cross sections - unfolded

γ + ¹⁶⁵Ho

Saclay Bergere et al., (1968) Livermore Berman et al., (1969) Present results - preliminary

Preliminary conclusions

- (γ,n) similar to Bergere et al.
- (γ,2n) higher than both
- (γ,3n) similar to Bergere et al.
- (γ,4n) measured for the first time

Preparing ELI-NP Gamma above Neutron Threshold experiments

IFIN 9 MV Tandem proposal,

together with the Oslo, Milano, Kobe, Moscow, Darmstadt and Krakow collaborators.

Preparatory Gamma Above Neutron Threshold experiments

Present study: Test and calibration of the ELIGANT-TN flat efficiency neutron detection system

T. Renstrøm,¹ D. Filipescu,² I. Gheorghe,² T. Glodariu,² M. Krzysiek,^{2,3} M. Boromiza,⁴ A. Negret,⁴ A. Olacel,⁴ C. Petrone,⁴ F.L. Bello Garrote,¹ H. Berg,¹ F. Furmyr,¹ D. Gjestvang,¹ G. Henriksen,^{1,5} V.W. Ingeberg,¹ A.-C. Larsen,¹ V. Modamio,¹ L.G. Pedersen,¹ S. Rose,¹ S. Siem,¹ G. Tveten,¹ F. Zeiser,¹ S. Belyshev,⁶ A. Kuznetsov,⁷ K. Stopani,⁷ P. van Beek,⁸ H. Scheit,⁸ D. Symochko,⁸ M. Ciemala,³ M. Kmiecik,³ A. Maj,³ F. Camera,^{9,10} G. Gosta,⁹ O. Wieland,⁹ T. Ari-izumi,¹¹ and H. Utsunomiya¹¹ ¹Department of Physics. University of Oslo, N-0316 Oslo, Norway ²ELI-NP, "Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului, 077125 Bucharest-Magurele, Romania ³Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland ⁴ "Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului, 077125 Bucharest-Magurele, Romania ⁵Norwegian Medical Cyclotron Centre Ltd. ⁶Lomonosov Moscow State University. Department of Physics, Moscow, 119991, Russia ⁷Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, 119991, Russia ⁸Institut für Kernphysik Technische Universität Darmstadt, Germany ⁹University of Milano, Department of Physics, Via Celoria 16, 20133 Milano, Italy ¹⁰INFN Section of Milano, Via Celoria 16, 20133 Milano, Italy ¹¹Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501, Japan

Preparing ELI-NP Gamma above Neutron Threshold experiments

IFIN 9 MV Tandem proposal,

together with the Oslo, Milano, Kobe, Moscow, Darmstadt and Krakow collaborators.

Preparatory Gamma Above Neutron Threshold experiments

Present study: Test and calibration of the ELIGANT-TN flat efficiency neutron detection system

¹¹Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501, Japan

Red curve: IAEA recommendation Red dots: Present results considering constant 37% efficiency Black dots: Present results considering ring ratio deduced efficiency

Black dots: Present results considering constant 37% efficiency

EUROPEAN UNION

Project co-financed by the European Regional Development Fund through the Competitiveness Operational Programme "Investing in Sustainable Development"

Extreme Light Infrastructure-Nuclear Physics

(ELI-NP) – Phase II

Collaboration

M. Krzysiek^{1,2}, I. Gheorghe^{2,3}, H. Utsunomiya⁴, D. M. Filipescu^{2,4}, S. Belyshev⁵, K. Stopani⁶, T. Renstrøm⁷, G. M. Tveten⁷, H. Wang⁸, G. Fan⁸, Y-W. Lui⁹, T. Ari-izumi⁴, S. Miyamoto¹⁰, H. Scheit¹¹, D. Symochko¹¹, E. Açiksöz², M. Boromiza⁴, F. Camera¹², C. Costache⁴, I. Dinescu⁴, G. Gosta¹², A. Ionescu⁴, A. Maj¹, A. Negret⁴, C. Nita⁴, A. Olacel⁴, C. Petrone⁴, A. Serban⁴, C. Sotty⁴, L. Stan⁴, R. Suvaila⁴, S. Toma⁴, A. Turturica⁴, S. Ujeniuc⁴, O.Wieland¹², F.B. Zeiser⁷

¹ Institute of Nuclear Physics, Krakow, Poland

² ELI-NP, "Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH) ,Bucharest-Magurele, Romania

⁴ "Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest-Magurele, Romania
 ⁴ Department of Physics, Konan University, Kobe, Japan
 ⁵ Department of Physics, Lomonosov Moscow State University, Moscow, Russia

⁶ Skobeltsyn Instutute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

⁷ Department of Physics, University of Oslo, Oslo, Norway

⁸ Shanghai Institute of Applied Physics, Shanghai, China

⁹ Cyclotron Institute, Texas A&M University, Texas, USA

¹⁰ Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Hyogo, Japan

¹¹ Technische Universität Darmstadt, Darmstadt, Germany

¹² INFN section of Milano, Italy

Thank you!

Direct neutron multiplicity sorting method

Validation against full Monte Carlo simulations of the experiment

- Implement the detection geometry and physics processes into the Geant4 code
- Simulate realistic (g,xn) photoneutron emissions

Neutron source simulated using a Monte Carlo reaction modelling code (provided by T. Kawano)

- ²⁰⁹Bi(g,xn) neutron emission spectra
- The code provides specific decay paths for each event:
 - Particle type and energy for each CN, event
- Isotropic emission was considered

Validation procedure

 Emit the reactions from the center of the detector
 Transport the reaction particles through the detector
 Analyse the simulated ³He counter energy deposition spectra using the DNM sorting technique.
 Compare the DNM results with the input ones, namely the Kawano ones.

Why use the Kawano MC SM calculation?

Energy spectrum of each successive emitted neutron for each reaction channel is needed. Example for measurements above S_{2n} and below S_{3n}

Neutrons from (g,1n) reactions Average energy **E**₁ Energy range: 0 to E_g - S_n

Neutrons from (g,2n) reactions emitted by the:

- ^AX nucleus
 - Average energy **E**₂₁
- ^{A-1}X nucleus
- Average energy E₂₂ Energy range: ~(0 to $E_g - S_{2n}$)

Total neutron emission spectrum from each compound nucleus.

Comparison with EMPIRE.

13.5, 22, 26, 40 MeV incident energies S_{5n} = 37.97 MeV Monte Carlo reaction modelling code.

Information provided by Monte Carlo statistical model code.

Energy spectra of each successively emitted neutron for each reaction channel.

40 MeV incident energy $S_{5n} = 37.97$ MeV Monte Carlo reaction modelling code.

(1) Is the FED flat efficiency energy interval enough for the ²⁰⁹Bi(g,xn) measurements?

Average energy of total neutron spectra

Ring ratio method Information on average energy of the emitted neutrons.

Total detection efficiency – flat.

The detection efficiency of each *individual ring* changes significantly with energy.

Different amount of moderator is found between the target and each ring: the inner ring and the outer rings display different detection efficiency trends.

$$R_R^{th}(E) = \frac{\varepsilon_{R_1}(E)}{\varepsilon_{R_2}(E) + \varepsilon_{R_3}(E)}$$
$$R_R^{exp}(E) = \frac{N_{R_1}(E)}{N_{R_2}(E) + N_{R_3}(E)}$$

Experimental: $\langle E \rangle_{mono} = 1.7 \text{ MeV}$ $\langle E \rangle_{evap} = 2.25 \text{ MeV}$

Average neutron energy: 20 % uncertainty

 $\langle E \rangle_{Maxw} = 2.5 \text{ MeV}$

Literature: 2.13 MeV

(2) Do we reproduce the input cross sections by applying the Direct Neutron Multiplicity Sorting method?

CONCLUSION:

Demonstrated that the neutron multiplicity sorting technique based on a FED is reliable and gives correct and accurate results.

Corrections for limited coincidence time gate

Using the Kawano Monte Carlo neutron source, we simulated the FED response.

The simulations are reproducing very well the experimental spectra.

Concluded that:

- 2% of double neutron events are registered as 2 single events
- 3% of triple neutron events are registered as 1 double and 1 single
- 4% of quadruple neutron events are registered as 1 triple and 1 single.

The number of events were corrected accordingly.

Preliminary results – ¹⁶⁹Tm

Entrance channel:

- 1. For incident Particle: using a direct model (optical model or coupled channels), direct reactions are explicitly calculated and all other reactions are grouped together into the "reaction" cross section.
- 2. For incident photon: the Photon absorption model provides the total photoabsorption cross section assuming CN and pre-equilibrium mecanism only.

Exit channel:

- 1. The absorption cross section is shared among all possible individual channels using a fluctuation / statistical / Compound Nucleus model.
- 2. Using the popular Hauser Feschbach model, the emission probability is computed using the transfer coefficients T and the level density functions.
- 3. The transfer coefficients
 - 1. For particle emission are obtained using a direct model
 - For gamma emission are obtained using dedicated models gamma strength functions.

$$\sigma_{\alpha',\alpha} = \frac{1}{4\pi} \lambda_{\alpha}^2 \sum_{J^{\Pi}} g_{\alpha}^J \frac{\sum_{lj} T_{\alpha lj}^{J\pi} \sum_{l'j'} T_{\alpha' l'j'}^{J\pi}}{\sum_{l''j''} T_{\alpha'' l''j''}^{J\pi}}$$

Photoneutron cross sections on ²⁰⁹Bi

Photoneutron cross sections on ²⁰⁹Bi

 $N_j = \sum_{i=j}^m {}_i C_j \cdot R_i \cdot \varepsilon^j (1-\varepsilon)^{i-j} \text{ Solve the system of equations} \Rightarrow R_x$

 $R_x = # (\gamma, xn)$ induced reactions $N_t = #$ target nuclei / unit surface $N_\gamma = #$ incident γ -rays on the target $\xi =$ thick target correction factor $f_x =$ fraction of photons above S_{xn}

γ-ray beam production

LCS γ -ray beams with maximum energies between 7.7 and ~42.2 MeV were produced with a Nd:YVO₄ laser (Spectra-Physics). The laser was operated in Q-switch mode at 16.66 kHz frequency - 60 µs time interval between consecutive laser bunches. Energy of injected electrons – 982 MeV.

γ-ray beam production

Question 1:

- How do we know the energy resolution and energy spectrum of the collimated γ-ray beams?
- Depending on the:
- Collimator aperture
- Electron and laser beam properties
 the energy spectrum of the incident
 γ-ray beam may change significantly:

Direct neutron multiplicity sorting

(1) Time between consecutive γ -ray bunches \approx neutron moderation time

1 ms laser pulsing - comparable to the moderation time of neutrons inside the polyethylene block
20 ms Beam ON / 80 ms Beam OFF data for background subtraction

(2) 1 γ -ray bunch generates no more than 1 reaction \rightarrow low reaction rates required

However, what we can measure is NOT the number of reactions BUT the number of neutrons observed.

Single neutron events

$$N_s = N_1 \cdot \varepsilon + N_2 \cdot C_1 \cdot \varepsilon \cdot (1 - \varepsilon) + N_3 \cdot C_1 \cdot \varepsilon \cdot (1 - \varepsilon)^2$$

Double neutron events

$$N_d = N_2 \cdot \varepsilon^2 + N_3 \cdot C_2 \cdot \varepsilon^2 \cdot (1 - \varepsilon)$$

Triple neutron events

 $N_t = N_3 \varepsilon^3$

ε: detection efficiency

Here, the detection efficiency ε is independent of neutron kinetic energies. We can solve a set of equations to obtain N_1 , N_2 , and N_3 .

Still to do ...

Correction (1) for Multiple firing effect

Low reaction rates are required for DNM sorting experiments, to avoid cases when two separate reactions are generated on two nuclei during a given photon pulse.

During the experiment, based on reaction cross section estimations, we tuned the incident photon flux and used properly thick targets for each irradiation energy.

During the data analysis, using the measured values for the monochromatic reaction cross sections, the average number of photons per gamma-ray bunch and target characteristics, we computed for each irradiation point the probabilities of generating multiple firing reactions.

Correction (2) - deconvolution for incident photon spectra

The $(\gamma, 2n)$, $(\gamma, 3n)$ and $(\gamma, 4n)$ cross sections to be unfolded using an iterative method of reproducing the monochromatic cross sections by folding a trial cross section with the incident γ spectrum.

Status of Photoneutron reactions cross section measurements at ELI-NP

- ✓ Get knowhow
- ✓ Electronics
 - ✓ Procurement and testing of:
 - High Voltage power supply
 - \blacktriangleright Preamp + CFD + ADC
 - Data acquisition system
- ✓ ³He counters
 - ✓ Procurement
 - ✓ Tested with Pu-Be neutron source and background radiation
 - ✓ Optimize working parameters with dedicated electronics
- ✓ Mechanical structure
 - ✓ Designed moderator for flat efficiency
 - ✓ Assemble working stand (Bosh frames + metallic support plate)
 - Procure high density polyethylene plates
 - ✓ Manufacture moderator
 - ✓ Procure Cadmium plates
 - ✓ Manufacture: Cd plates, beam line, target holder, beam dump
- \checkmark Calibrate and test the detection system using charged particle beams
 - ✓ Monitor reactions for efficiency calibration
 - ✓ $^{nat}Cu(p,n)^{63}Zn$ (T_{1/2} = 38.47 minutes)
 - \checkmark Cross check using the activation technique
 - ✓ Test ring ratio technique

Many thanks to our CAD designer, Eng. G. Ciocan

Muclear Physics Gamma ray beam source

Warm electron RF Linac

- multi–bunch photogun
- (32 e⁻ microbunches of 250 pC @100 Hz RF)
- two acceleration stages (300 MeV and 720 MeV)

High average power, J-class 100 Hz ps Collision Laser

- state-of-the-art cryo-cooled Yb:YAG (200 mJ, 2.3 eV, 3.5 ps)
- two lasers (one for low–Eg and both for high–Eg)

Energy (MeV)	0.2 – 19.5
Spectral Density (ph/s·eV)	> 0.5.104
Bandwidth rms (%)	≤ 0.5
# photons/s within FWHM bdw.	$\leq 8.3 \cdot 10^8$
Source rms size (mm)	10 – 30
Source rms divergence (mrad)	25 - 200
Linear polarization (%)	> 95

