

Université

JINR

Dubna

de Strasbourg

Evidence of Isomers in ²⁵⁵No and ²⁵⁶No

Dubna
 Dubna

Kieran Kessaci

Kessaci Kieran - Colloque GANIL 2019- Evidence of Isomers in 255No and 256No - 12/09/2019

I. Scientific Context

II. Setup

III. Experiment : ${}^{22}Ne + {}^{238}U \rightarrow {}^{260-x}No + xn$

IV. Preliminary Results

Kessaci Kieran - Colloque GANIL 2019- Evidence of Isomers in 255No and 256No - 12/09/2019

2

Université

Kessaci Kieran - Colloque GANIL 2019- Evidence of Isomers in 255No and 256No - 12/09/2019

Spectroscopy Around ²⁵⁴No

- The region around $^{254}_{102}No$ was widely studied by cold fusion
 - ${}^{48}_{20}Ca + {}^{208}_{82}Pb \rightarrow {}^{254}_{102}No + 2n$
 - ${}^{50}_{22}Ti + {}^{208}_{82}Pb \rightarrow {}^{256}_{104}Rf + 2n$
 - ${}^{51}_{23}V + {}^{208}_{82}Pb \rightarrow {}^{258}_{102}Db + n$
- Rotational structures and high-K isomers were observed
- $\frac{256}{102}No$ can't be produced by cold fusion
- The first ${}^{22}_{10}Ne + {}^{238}_{92}U \rightarrow {}^{260-x}_{102}No + xn$ experiment was done by E. D. Donets et al. in 1966 [1]
 - \rightarrow Alpha spectroscopy only !

Ch. Theisen et al. / Nuclear Physics A 944 (2015) 333–375

Université

de Strasbourg

- ${}^{22}_{10}Ne + {}^{238}_{92}U \rightarrow {}^{260-x}_{102}No + xn$ was tried in Jyvaskyla in 2006 but the recoils were too slow to cross the gas filled separator
 - \rightarrow Slow Recoils (0 MeV to 6 MeV)

Kessaci Kieran - Colloque GANIL 2019- Evidence of Isomers in 255No and 256No - 12/09/2019

[1] E.D. Donets et al.- J. Nucl. Phys. (1966) 2, 1015-1023

Spectroscopy Around ²⁵⁴No

- The region around $^{254}_{102}No$ was widely studied by cold fusion
 - ${}^{48}_{20}Ca + {}^{208}_{82}Pb \rightarrow {}^{254}_{102}No + 2n$
 - ${}^{50}_{22}Ti + {}^{208}_{82}Pb \rightarrow {}^{256}_{104}Rf + 2n$
 - ${}^{51}_{23}V + {}^{208}_{82}Pb \rightarrow {}^{258}_{102}Db + n$
- Rotational structures and high-K isomers were observed
- $\frac{256}{102}No$ can't be produced by cold fusion
- The first ${}^{22}_{10}Ne + {}^{238}_{92}U \rightarrow {}^{260-x}_{102}No + xn$ experiment was done by E. D. Donets et al. in 1966 [1]
 - \rightarrow Alpha spectroscopy only !

Ch. Theisen et al. / Nuclear Physics A 944 (2015) 333-375

						_					
250	251	252	253	254	255	256	257	258	259	260	262
1	6	33	26	44	2		1				
		3	2	3							
0+	(7/2+)	0+	(9/2-)	0+	$(1/2^+)$	0+	(3/2+)	0+	(9/2+)	0+	0+

Université

de Strasbourg

No excited states were already observed in ²⁵⁶No

[1] E.D. Donets et al.- J. Nucl. Phys. (1966) 2, 1015-1023

• ${}^{22}_{10}Ne + {}^{238}_{92}U \rightarrow {}^{260-x}_{102}No + xn$ was tried in Jyvaskyla in 2006 but the recoils were too slow to cross the gas filled separator

 \rightarrow Slow Recoils (0 MeV to 6 MeV)

Kessaci Kieran - Colloque GANIL 2019- Evidence of Isomers in 255No and 256No - 12/09/2019

I. Context

II. Setup

III. Experiment : ${}^{22}Ne + {}^{238}U \rightarrow {}^{260-x}No + xn$

IV. Preliminary Results

Kessaci Kieran - Colloque GANIL 2019- Evidence of Isomers in 255No and 256No - 12/09/2019

Université

Reaction

²²Ne(¹⁹⁸Pt,5-7n)²¹³⁻²¹⁵Ra

²²Ne(¹⁹⁷Au,4-6n)²¹³⁻²¹⁵Ac

Setup

I. SHELS : Separator for Heavy Elements Spectroscopy

- Between 2006 and 2013, SHELS (JINR-IN2P3 collaboration) [4] was developed starting from the existing VASSILISSA separator
- SHELS was optimized for asymmetric reactions \rightarrow Higher transmission
 - \rightarrow Light beams and heavy targets (Hot fusion)
- First Tests : 2013 [6] A.G. Popeko Nuclear Instruments and Methods in Physics Research B 376 (2016) 140-143

[4] A. Yeremin, O. Malyshev and al. - EPJ Web of

Conferences 86, 00065 (2015)

• ${}^{22}_{10}Ne + {}^{238}_{92}U \rightarrow {}^{260-x}_{102}No + xn$ \rightarrow First asymmetric experiment with this setup

Kessaci Kieran - Collogue GANIL 2019- Evidence of Isomers in 255No and 256No - 12/09/2019

Beam energy

0.30 (metal)

0.35 (metal)

115 - 125

120

Université

de Strasbourg

II. GABRIELA : Gamma Alpha Beta Recoil Investigations with the ELectromagnetic Analyzer

- Time of Flight detector (ToF) :
 - Usually two foils to give the time of flight between them
 - Each foil is made of one electron emissive foil and two MCP
 - One of the ToF detector was unmounted because it could stopped the recoils before the focal plane (slow recoils)
 - Recoils range : 0 to 6 MeV
- Implantation detector (DSSD 128x128)
- Tunnel detectors (8 DSSD)
- Germanium detectors (4 monocrystals + CLODETTE)

II. GABRIELA : Gamma Alpha Beta Recoil Investigations with the ELectromagnetic Analyzer

Recoil

Université

Implantation

ToF

Ge

Ð

de Strasbourg

Ge

11

- Time of Flight detector (ToF) :
 - Usually two foils to give the time of flight between them
 - Each foil is made of one electron emissive foil and two MCP
 - One of the ToF detector was unmounted because it could stopped the recoils before the focal plane (slow recoils)
 - Recoils range : 0 to 6 MeV
- Implantation detector (DSSD 128x128)
- Tunnel detectors (8 DSSD)
- Germanium detectors (4 monocrystals + CLODETTE)

II. GABRIELA : Gamma Alpha Beta Recoil Investigations with the ELectromagnetic Analyzer

Recoil

- Time of Flight detector (ToF) :
 - Usually two foils to give the time of flight between them
 - Each foil is made of one electron emissive foil and two MCP
 - One of the ToF detector was unmounted because it could stopped the recoils before the focal plane (slow recoils)
 - Recoils range : 0 to 6 MeV
- Implantation detector (DSSD 128x128)
- Tunnel detectors (8 DSSD)
- Germanium detectors (4 monocrystals + CLODETTE)

Ge

Université

Implantation

ToF

Ge

Ð

II. GABRIELA : Gamma Alpha Beta Recoil Investigations with the ELectromagnetic Analyzer

Recoil

- Time of Flight detector (ToF) :
 - Usually two foils to give the time of flight between them
 - Each foil is made of one electron emissive foil and two MCP
 - One of the ToF detector was unmounted because it could stopped the recoils before the focal plane (slow recoils)
 - Recoils range : 0 to 6 MeV
- Implantation detector (DSSD 128x128)
- Tunnel detectors (8 DSSD)
- Germanium detectors (4 monocrystals + CLODETTE)

Ge

Université

Implantation

ToF

Ge

Ð

II. GABRIELA : Gamma Alpha Beta Recoil Investigations with the ELectromagnetic Analyzer

Recoil

- Time of Flight detector (ToF) :
 - Usually two foils to give the time of flight between them
 - Each foil is made of one electron emissive foil and two MCP
 - One of the ToF detector was unmounted because it could stopped the recoils before the focal plane (slow recoils)
 - Recoils range : 0 to 6 MeV
- Implantation detector (DSSD 128x128)
- Tunnel detectors (8 DSSD)
- Germanium detectors (4 monocrystals + CLODETTE)

Université

Implantation

ToF

Ge

عم

I. Context

II. Setup

III. Experiment : ${}^{22}Ne + {}^{238}U \rightarrow {}^{260-x}No + xn$

IV. Preliminary Results

Kessaci Kieran - Colloque GANIL 2019- Evidence of Isomers in 255No and 256No - 12/09/2019

Université

- I. Experimental Conditions
 - $^{22}Ne + ^{238}U \rightarrow ^{260-x}No + xn$
- April 2019 (4 months ago)
- 3 weeks of beamtime
- ²³⁸U(M) Target (99,99% pure),
- 233µg/cm² 1.5 µm Titanium backing
- ²²Ne Beam
- Intensity between 0.6 and 1 pµA
- Integral 15 600 000 µC
 - Beam Energy 107-112 MeV

Maxima of the excitation function are ²³⁸U(²²Ne,5n)²⁵⁵No 118 MeV ²³⁸U(²²Ne,4n)²⁵⁶No 112 MeV

- II. Calibration : ${}^{22}_{10}Ne + {}^{198}_{78}Pt \rightarrow {}^{220-x}_{88}Ra + xn$
 - $^{22}_{10}Ne + ^{198}_{78}Pt \rightarrow ^{220-x}_{88}Ra + xn$
 - Beam Energy : 112.5 MeV
 - \rightarrow 5n channel : 8 mb
 - \rightarrow 6n channel : 33.5 mb
 - \rightarrow 7n channel : 2.5 mb
 - Integral 12 280 µC
 - Alpha : ²¹⁴Ra, ²¹⁵Ra, ²¹⁰Rn
 - Beta : ²¹⁴Ra with the sequence of transitions :
 - 46-182-257-1382 keV
 - Gamma : ¹⁵²Eu and ¹³³Ba sources

A.N. Andreyev et al. / Nuclear Physics A 620 (1997) 229-248

- II. Calibration : ${}^{22}_{10}Ne + {}^{198}_{78}Pt \rightarrow {}^{220-x}_{88}Ra + xn$
 - $^{22}_{10}Ne + ^{198}_{78}Pt \rightarrow ^{220-x}_{88}Ra + xn$
 - Beam Energy : 112.5 MeV
 - \rightarrow 5n channel : 8 mb
 - \rightarrow 6n channel : 33.5 mb
 - \rightarrow 7n channel : 2.5 mb
 - Integral 12 280 µC
 - Alpha : ²¹⁴Ra, ²¹⁵Ra, ²¹⁰Rn
 - Beta : ²¹⁴Ra with the sequence of transitions :
 - 46-182-257-1382 keV
 - Gamma : ¹⁵²Eu and ¹³³Ba sources

Université

- II. Calibration : ${}^{22}_{10}Ne + {}^{198}_{78}Pt \rightarrow {}^{220-x}_{88}Ra + xn$
 - $^{22}_{10}Ne + ^{198}_{78}Pt \rightarrow ^{220-x}_{88}Ra + xn$
 - Beam Energy : 112.5 MeV
 - \rightarrow 5n channel : 8 mb
 - \rightarrow 6n channel : 33.5 mb
 - \rightarrow 7n channel : 2.5 mb
 - Integral 12 280 µC
 - Alpha : ²¹⁴Ra, ²¹⁵Ra, ²¹⁰Rn
 - Beta : ²¹⁴Ra with the sequence of transitions :

46-182-257-1382 keV

• Gamma : ¹⁵²Eu and ¹³³Ba sources

Université de Strasbourg

Energy as a function of Decay Time

- II. Calibration : ${}^{22}_{10}Ne + {}^{198}_{78}Pt \rightarrow {}^{220-x}_{88}Ra + xn$
 - $^{22}_{10}Ne + ^{198}_{78}Pt \rightarrow ^{220-x}_{88}Ra + xn$
 - Beam Energy : 112.5 MeV
 - \rightarrow 5n channel : 8 mb
 - \rightarrow 6n channel : 33.5 mb
 - \rightarrow 7n channel : 2.5 mb
 - Integral 12 280 µC
 - Alpha : ²¹⁴Ra, ²¹⁵Ra, ²¹⁰Rn
 - Beta : ²¹⁴Ra with the sequence of transitions :

46-182-257-1382 keV

• Gamma : ¹⁵²Eu and ¹³³Ba sources

Université de Strasbourg

I. Context

II. Setup

III. Experiment : ${}^{22}Ne + {}^{238}U \rightarrow {}^{260-x}No + xn$

IV. Preliminary Results

Kessaci Kieran - Colloque GANIL 2019- Evidence of Isomers in 255No and 256No - 12/09/2019

Université

Results : SHELS Transmission

Université de Strasbourg

Calibration reaction ${}^{22}Ne + {}^{198}Pt \rightarrow {}^{220-x}Ra + xn$ [8]

	²¹⁵ Ra seen	²¹⁴ Ra seen		
Run 1	4.602e5	2.070e6		
Run 2	6.921e5	2.852e6		
Total	1.161e6	4.922e6		
σ (mb)	8.0	35		
Integral (µC)	12 280			
Transmission (%)	4.5% (5)			

Alpha energy vs Decay Time

Lower limit for the transmission of SHELS is 4.5% in ²²Ne + ¹⁹⁸Pt

- Charge collection issues due to high counting rate
- **Recoil detection** ٠

[8] A.N. Andreyev and al. - Nucl.r Phys. A 620 (1997) 229-248

Kessaci Kieran - Colloque GANIL 2019- Evidence of Isomers in 255No and 256No - 12/09/2019

Results : Lifetime and Energy

- $^{22}Ne + ^{238}U \rightarrow ^{260-x}No + xn$
- ²⁵⁶No: 8431 ± 1 keV
- ²⁵⁵No: 7748 ± 2 keV 7843 ± 4 keV 7909 ± 2 keV 8101 ± 1 keV 8232 ± 8 keV
- Lifetime scale in log(delta_T)/log(2)
- Lifetime fitted. By a two components function with fixed background's parameters (random correlations)
- Random correlations: $T_{1/2} = \frac{\ln(2)}{\lambda} = 28.1 \pm 0.6 s$
- Half-life of ²⁵⁶No: $T_{1/2} = \frac{\ln(2)}{\lambda} = 2,79 \pm 0,18 s$ Literature half-life : 2,8 ± 0,3 s [9]
- Half-life of 255 No is in the random correlations Literature half-life : 3,52 \pm 0,21 min [10]
 - Kessaci Kieran Colloque GANIL 2019- Evidence of Isomers in 255No and 256No 12/09/2019

ProjectionY of binx=[1936,1947] [x=9675..9735]

Université

de Strasbourg

[9] Sikkeland, Torbjorn and al. - Berkeley National Laboratory (1967) [10] M. Asai and al. - Physical Review C 83, 014315 (2011)

Results : Lifetime and Energy

- $^{22}Ne + ^{238}U \rightarrow ^{260-x}No + xn$
- ²⁵⁶No: 8431 ± 1 keV
- ²⁵⁵No: 7748 ± 2 keV 7843 ± 4 keV 7909 ± 2 keV 8101 ± 1 keV 8232 ± 8 keV
- Lifetime scale in log(delta_T)/log(2)
- Lifetime fitted. By a two components function with fixed background's parameters (random correlations)
- Random correlations: $T_{1/2} = \frac{\ln(2)}{\lambda} = 28.1 \pm 0.6 s$
- Half-life of ²⁵⁶No: $T_{1/2} = \frac{\ln(2)}{\lambda} = 2,79 \pm 0,18 s$ Literature half-life : 2,8 ± 0,3 s [9]
- Half-life of 255 No is in the random correlations Literature half-life : 3,52 \pm 0,21 min [10]
 - Kessaci Kieran Colloque GANIL 2019- Evidence of Isomers in 255No and 256No 12/09/2019

ProjectionY of binx=[1681,1692] [x=8400..8460]

Université

de Strasbourg

[9] Sikkeland, Torbjorn and al. - Berkeley National Laboratory (1967)[10] M. Asai and al. - Physical Review C 83, 014315 (2011)

Results : Isomers

de Strasbourg

Université

 This plot shows the lifetime of the isomers as a function of the following alpha decay energy

- We can see the known isomer in ²¹⁵Ra at 8699 keV from the ¹⁹⁸Pt Calibration
- At 8430 keV we can see the 11 events of a new isomer in ²⁵⁶No
- Between 7700 and 8150 keV we can see many events of an isomer in ²⁵⁵No

Kessaci Kieran - Colloque GANIL 2019- Evidence of Isomers in 255No and 256No - 12/09/2019

Recoil-Elec Time vs Energy Alpha

- With only 11 events of an isomeric state in ²⁵⁶No, we need to use the K. H. Schmidt method [11] to extract its lifetime and the confidence interval
- 2 $\sigma \rightarrow$ Confidence level 95.45% $T_{1/2} = 9,7 \stackrel{+14}{_{-3,6}} \mu s$
- 1 $\sigma \rightarrow$ Confidence level 68.27% $T_{1/2} = 9,7 \stackrel{+4,2}{_{-2,2}} \mu s$
- For small numbers, this method is much more accurate than the generally used symmetric errors
- We can see events of a K_{α} X-Ray in coincidence with the decay of the isomer

Université

de Strasbourg

[11] K. H. Schmidt - Zei. Fur Phy. A, Atomes and Nuclei 316, 19-26 (1984)

- With only 11 events of an isomeric state in ²⁵⁶No, we need to use the K. H. Schmidt method [11] to extract its lifetime and the confidence interval
- 2 $\sigma \rightarrow$ Confidence level 95.45% $T_{1/2} = 9,7 \stackrel{+14}{_{-3,6}} \mu s$
- 1 $\sigma \rightarrow$ Confidence level 68.27% $T_{1/2} = 9,7 \stackrel{+4,2}{_{-2,2}} \mu s$
- For small numbers, this method is much more accurate than the generally used symmetric errors
- We can see events of a $K_{\alpha}\,X\mbox{-}Ray$ in coincidence with the decay of the isomer

Université

de Strasbourg

[11] K. H. Schmidt - Zei. Fur Phy. A, Atomes and Nuclei 316, 19-26 (1984)

- The alpha decay of ²⁵⁵No is distributed in 10 different alpha rays
- ²⁵⁵No was already studied to extract a level scheme for the daughter of this nucleus, the ²⁵¹Fm [ref]
- Energy range 7700-8300 keV
- With this statistic, we can fit the lifetime distribution

 $T_{1/2} = 136,9 \pm 3,2 \ \mu s$

Energy	Relative	Excited-state energy (keV)					
(keV)	intensity ^a	From α energies	From γ energies				
7702(5)	9.0(20)	604(4)					
7726(6)	9.1(29)	579(5)					
7748(3)	62(5)	557.3(18)	558.7(2)				
7842(4)	14.4(22)	461(3)					
7909(3)	56(4)	393.8(18)	395.4(2)				
8001(4)	22.8(26)	301(3)					
8057(4)	34.7(31)	243(3)					
8100(3)	100(5)	200.09 ^b	200.09(11)				
8233(4)	23.1(26)	64.6(28)	63.9(8)				
8296(6)	4.0(12)	0.7(52)	0				

^aFor I_{α} per 100 α decays, multiply by 0.297. ^bNormalized at this level.

- The alpha decay of ²⁵⁵No is distributed in 10 different alpha rays
- ²⁵⁵No was already studied to extract a level scheme for the daughter of this nucleus, the ²⁵¹Fm [ref]
- Energy range 7700-8300 keV
- With this statistic, we can fit the lifetime distribution

 $T_{1/2} = 136,9 \pm 3,2 \ \mu s$

KHS_Recoil_Mother_Time_fct_Daugternergy2

Université

- The alpha decay of ²⁵⁵No is distributed in 10 different alpha rays
- ²⁵⁵No was already studied to extract a level scheme for the daughter of this nucleus, the ²⁵¹Fm [ref]
- Energy range 7700-8300 keV
- With this statistic, we can fit the lifetime distribution

T_{1/2} = 136,9 ± 3,2 μs

ProjectionY of binx=[766,830] [x=7650..8300]

- The alpha decay of ²⁵⁵No is distributed in 10 different alpha rays
- ²⁵⁵No was already studied to extract a level scheme for the daughter of this nucleus, the ²⁵¹Fm [ref]
- Energy range 7700-8300 keV
- With this statistic, we can fit the lifetime distribution

T_{1/2} = 136,9 ± 3,2 µs

Université

- The alpha decay of ²⁵⁵No is distributed in 10 different alpha rays
- ²⁵⁵No was already studied to extract a level scheme for the daughter of this nucleus, the ²⁵¹Fm [ref]
- Energy range 7700-8300 keV
- With this statistic, we can fit the lifetime distribution

T_{1/2} = 136,9 ± 3,2 μs

Results : ²⁵¹Fm X-rays

- Through the decay of ²⁵⁵No we can see the X-rays of ²⁵¹Fm
- These results are in perfect agreement with the study from M. Asai (2011) [9] or K. Rezynkina (2018) [12]

Université

de Strasbourg

[9] M. Asai, K. Tsukada, H. Haba and al. - PHYSICAL REVIEW C 83, 014315 (2011) [12] K. Rezynkina, A. Lopez-Martens, K. Hauschild and al. - PRC 97, 054332 (2018)

Conclusion

• We found a new isomeric state in ²⁵⁵No with a half-life of :

 $T_{1/2}$ = 136,9 ± 3,2 µs

 We also found a new isomeric state in ²⁵⁶No with a half-life of :

 $T_{1/2} = 9,7 + 4,2 -2,2$ µs

- The analysis on these data is still ongoing and I hope to extract the energies of excited states in the decay of ²⁵⁵No*
- We need more statistics for the ²⁵⁶No*, so this experiment will be repeated at the beginning of 2020, with the same team in Dubna

Recoil-Elec Time vs Energy Alpha

Université

Conclusion

• We found a new isomeric state in ²⁵⁵No with a half-life of :

```
T_{1/2} = 136,9 ± 3,2 µs
```

 We also found a new isomeric state in ²⁵⁶No with a half-life of :

 $T_{1/2} = 9,7 + 4,2 -2,2$ µs

- The analysis on these data is still ongoing and I hope to extract the energies of excited states in the decay of ²⁵⁵No*
- We need more statistics for the ²⁵⁶No*, so this experiment will be repeated at the beginning of 2020, with the same team in Dubna

Collaborators :

- IN2P3/GANIL Collaboration : B. J. P. Gall, O. Dorvaux, A. Lopez-Martens, K. Hauschild, J. Piot, R. Chakma, Z. Asfari
- FLNR : A. V. Yeremin, M. L. Chelnokov, V. I. Chepigin, A. V. Isaev, O. N. Malyshev, A. G. Popeko, Y. A. Popov, A. A. Kuznetsova, A. I. Svirikhin, E. A. Sokol, M. S. Tezekbayeva
- Chinese Academy of Science : B. Ding, Z.Liu, F. Zhang

Bibliography

- [1] E.D. Donets, V. A. Shchegolev and V.A. Ermakov Reactions involving Evaporation of Several Neutrons on Bombardment of ²³⁸U by accelerated ions J. Nucl. Phys. (1966) 2, 1015-1023
- F. Khalfallah, B.J.P. Gall and al. Gamma spectroscopy of 256No using a radioactive ²³⁸U target Proposal 2006
- G D Dracoulis et al Review of metastable states in heavy nuclei 2016 Rep. Prog. Phys. 79 076301
- [4] A. Yeremin, O. Malyshev and al. First experimental tests of the kinematic separator SHELS (Separator for Heavy Element Spectroscopy) EPJ Web of Conferences 86, 00065 (2015)
- [5] A.V. YEREMIN, A.N. ANDREYEV and al. The VASSILISSA Facility for Electrostatic Separation and Study of Complete Fusion Reaction Products Nuclear Instruments and Methods in Physics Research A274 (1989) 528-532
- [6] A.G. Popeko, A.V. Yeremin and al. Separator for Heavy ELement Spectroscopy velocity filter SHELS Nuclear Instruments and Methods in Physics Research B 376 (2016) 140-143
- [7] Ch. Theisen, P.T. Greenlees and al. In-beam spectroscopy of heavy elements Nuclear Physics A 944 (2015) 333-375
- [8] A.N. Andreyev and al. Decay widths of highly excited Ra compound nuclei Nuclear Physics A 620 (1997) 229-248
- [9] Sikkeland, Torbjorn and al. Production of Nobelium Isotopes in Reactions between various Curium Targets and Carbon Ions Lawrence Berkeley National Laboratory (1967)
- [10] M. Asai, K. Tsukada, H. Haba and al. Neutron one-quasiparticle states in ²⁵¹Fm populated via the α decay of 255No PHYSICAL REVIEW C 83, 014315 (2011)
- [11] K. H. Schmidt Some Remarks on the Error Analysis in the Case of Poor Statistics Zei. Fur Phy. A, Atomes and Nuclei 316, 19-26 (1984)
- [12] K. Rezynkina, A. Lopez-Martens, K. Hauschild and al. Influence of octupole vibration on the low-lying structure of 251Fm and other heavy N=151 isotones PHYSICAL REVIEW C 97, 054332 (2018)

Kessaci Kieran - Colloque GANIL 2019- Evidence of Isomers in 255No and 256No - 12/09/2019

Level Scheme of ²⁵¹Fm

FIG. 2. A simplified level scheme depicting the observed transitions in 251 Fm populated in α decay of 255 No.

M. ASAI et al. PHYSICAL REVIEW C 83, 014315 (2011)

tut Pluridisciplinaire Hubert CURIEN STRASBOUR

324

M. Asai et al. / Nuclear Physics A 944 (2015) 308–332

Fig. 9. Experimental (a) and calculated ((b) [78], (c) [79,80], (d) [81], (e) [82]) low lying single particle levels in N = 153 isotones.

Kessaci Kieran - Colloque GANIL 2019- Evidence of Isomers in 255No and 256No - 12/09/2019

itut Pluridisciplinaire Hubert CURIEN STRASBOURG

Hot/Cold fusion targets

Université

de Strasbourg

Kessaci Kieran - Colloque GANIL 2019- Evidence of Isomers in 255No and 256No - 12/09/2019

NRV Excitation Function Calculations

Evaporation residue cross section for the reaction ²²Ne+²³⁸U E^{*}, MeV 50 30 40 60 70 10-3 000000000 10-4 10-5 10-6 10-7 10⁻⁸ cross section (mb) 10⁻⁹-10-10_ 10-11 10-12-10-13 10-14 10⁻¹⁵ 10-16 100 120 130 90 110 E_{cm} (MeV) Click left mouse button and drag for zooming 🗹 3n ○ 🗹 4n ○ 🗹 2n 🔘 🗌 1a3n 🗌 1a2n 🗌 1p3n 🗌 1a4n 🗹 6n 🗆 🗹 5n 🗌 🗌 1a5n 🗌 1p4n 🗌 1a1n

Institut Pluridisciplinaire Hubert CURIEN STRASBOURG

Kessaci Kieran - Colloque GANIL 2019- Evidence of Isomers in 255No and 256No - 12/09/2019

Deformed Proton single particle energies

Institut Pluridisciplinaire Hubert CURIEN STRASBOURG

J. Dudek et al., private communication.

Deformed Neutron single particle energies

J. Dudek et al., private communication.

Gamma Prompt with Conversion Electron Energy

ProjectionY of binx=[0,999] [x=-4..3996] slice_py_of_A2_Vs_Gamma_PROMPTA1_255_BIS Number of Entries Entries 121 5 Mean 211.5 109.7 Std Dev 3 2 0 L 0 50 100 150 200 250 300 350 400 450

Conversion electrons spectrum ²⁵⁵No*

- Projection of a recoilgamma lifetime vs energy graph
- With a 255No decay following in the same pixel to clean the spectrum

Conversion Electron Energy

255No* Electrons Energy

Conversion Electron Energy ²⁵⁶No*

Hubert CURIE

Recoil Distribution ²²Ne+²³⁸U

Energy_recoils_precedant_un_alpha

Recoil Distribution ²²Ne+²³⁸U

Energy_recoils_precedant_un_alpha

hist DSSDF total hist_ELOW_calibrated_DSSDF_total Counts Entries 1101668 9 8377 Mean Std Dev 240.3 6 4 З 2 ¹<u>|</u> 9200 8000 8200 8400 8600 8800 9000 Energy [keV]

Kessaci Kieran - Colloque GANIL 2019- Evidence of Isomers in 255No and 256No - 12/09/2019

Institut Pluridisciplinaire Hubert CURIEN STRASBOURG