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1. Important task: Develop a modern Energy Density

Functional (EDF), E = E[ρ], with enhanced predictive

power for properties of rare nuclei.

2. We start from EDF obtained from the Skyrme N-N

interaction.

3. The effective Skyrme interaction has been used in

mean-field models for several decades. Many different

parameterizations of the interaction have been realized

to better reproduce nuclear masses, radii, and various

other data. Today, there is more experimental data of

nuclei far from the stability line. It is time to improve the

parameters of Skyrme interactions. We fit our mean-

field results to an extensive set of experimental data and

obtain the parameters of the Skyrme type effective

interaction for nuclei at and far from the stability line.

Introduction



Map of the existing nuclei. The black squares in the central zone are stable nuclei, 

the broken inner lines show the status of known unstable nuclei as of 1986 and the 

outer lines are the assessed proton and neutron drip lines (Hansen 1991).



Equation of state and nuclear matter compressibility
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The symmetric nuclear matter (N=Z and no Coulomb) incompressibility 

coefficient, K, is a important physical quantity in the study of nuclei, supernova 

collapse, neutron stars, and heavy-ion collisions, since it is directly related to the 

curvature of the nuclear matter (NM) equation of state (EOS), E = E(ρ).

ofo

d

AEd

dk

AEd
kK

kf

f





2

2
2

2

2
2 )/(

9
)/(



ρ [fm-3]

ρ = 0.16 fm-3

E
/A

 [
M

eV
]

E/A = -16 MeV

2

(

(
)((

18

1
]([]([ 





















o

o
oooANM KEE

2][]([  JEE oo 

2
v]([  KKK o 

AZN /)( 

][ oSYMEJ 

AZy /

2/1,

2

2 )/(

8

1
)(





y

SYM

dy

AEd
E







Modern Energy Density Functional

Within the HF approximation: the ground state wave function 

 totalHE ˆHF equations:     minimize

The total Hamiltonian of the nucleus
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we adopt the standard Skyrme type interaction 
NN

ijV

For the nucleon-nucleon interaction

Skyrme interaction

0,,, Wxt ii  are 10 Skyrme parameters. 
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The total energy
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After carrying out the minimization of energy, we 
obtain the HF equations:
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where           ,           , and            are the effective 
mass, the potential and the spin orbit potential. 
They are given in terms of the Skyrme parameters 
and the nuclear densities.
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Simulated Annealing Method (SAM)

We use the SAM to determine the values of the Skyrme 

parameters by searching the global minimum for the chi-square 

function

The SAM is a method for optimization problems of large scale, in 

particular, where a desired global extremum is hidden among many 

local extrema.
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Nd is the number of experimental data points.

Np is the number of parameters to be fitted. 

and are the experimental and the corresponding 

theoretical values of the physical quantities.

is the adopted uncertainty. 
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Implementing the SAM to search the global minimum of             function:

3.  Calculate           for a given set of experimental data and the corresponding

2

+ Use this modified vector         to generate a new set of Skyrme 

parameters. 

0,,, Wxt ii  are written in term of 1. ,...,,/ nmnmKAB 

),,,,,,/*,,,/( 0

'
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.

2.  Define

HF results (using an initial guess for Skyrme parameters).

4.  Determine a new set of Skyrme parameters by the following steps:

+ Use a random number to select a component          of  vector rv

v


+ Use another random number          to get a new value of rv

dvv rr 

2

old

v




5.  Go back to HF and calculate 
2

new

6. The new set of Skyrme parameters is accepted only if 
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7.  Starting with an initial value of                , we repeat steps 4 - 6 for a large 

number of loops. 
iTT 

8.  Reduce the parameter T as               and repeat steps 1 – 7. 

9.  Repeat this until hopefully reaching global minimum of 

k

T
T i

2



Fitted data

- The binding energies for 14 nuclei ranging from normal to the exotic

(proton or neutron) ones: 16O, 24O, 34Si, 40Ca, 48Ca, 48Ni, 56Ni, 68Ni, 78Ni,
88Sr, 90Zr, 100Sn, 132Sn, and 208Pb.

- Charge rms radii for 7 nuclei: 16O, 40Ca, 48Ca, 56Ni, 88Sr, 90Zr, 208Pb.

- The spin-orbit splittings for 2p proton and neutron orbits for   56Ni 

(2p1/2) - (2p3/2) = 1.88 MeV (neutron)

(2p1/2) - (2p3/2) = 1.83 MeV (proton).

- Rms radii for the valence neutron:

in the 1d5/2 orbit for 17O fmdrn 36.3)1( 2/5 

in the 1f7/2 orbit for 41Ca fmfrn 99.3)1( 2/7 

- The breathing mode energy for 4 nuclei: 90Zr (17.81 MeV), 116Sn

(15.9 MeV), 144Sm (15.25 MeV), and 208Pb (14.18 MeV).
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2. The Landau parameter 
'

0G should be positive at 0 

3. The quantity 



d

dS
P 3 must be positive for densities up to 03

4. The IVGDR enhancement factor 5.025.0  
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5.0150.0100.0120.0W0 (MeV fm5)

0.100.400.000.08G’0

0.10.50.10.25Kappa

10.080.020.047.0L (MeV)

4.040.025.032.0J (MeV)

0.319.017.018.0Es (MeV)

0.040.900.600.70m*/m

0.0050.1700.1500.160ρnm (fm-3)

20.0300.0200.0230.0Knm (MeV)

0.415.017.016.0B/A (MeV)

dv1v0v



Parameter KDE0 KDE0v1 KDEX

t0 (MeV fm3) -2526.5110 -2553.0843 -1419.8304

t1 (MeV fm5) 430.9418 411.6963 309.1373

t2 (MeV fm5) -398.3775 -419.8712 -172.9562

t3(MeVfm3(1+α)) 14235.5193 14603.6069 10465.3523

x0 0.7583 0.6483 0.1474

x1 -0.3087 -0.3472 -0.0853

x2 -0.9495 -0.9268 -0.6144

x3 1.1445 0.9475 0.0220

W0(MeV fm5) 128.9649 124.4100 98.8973

α 0.1676 0.1673 0.4989

B/A (MeV) 16.11 16.23 15.96

K (MeV) 228.82 227.54 274.20

ρ0 (fm-3) 0.161 0.165 0.155

m*/m 0.72 0.74 0.81

J (MeV) 33.00 34.58 32.76

L (MeV) 45.22 54.69 63.70

κ 0.30 0.23 0.33

G'0 0.05 0.00 0.41

Values of the Skyrme parameters and the corresponding physical quantities of 

nuclear matter for the KDE0 and KDE0v1 and KDEX interactions.



HF results for the total binding energy B (in MeV) and charge rms radii rch (in fm)  

    and the corresponding deviations from the experimental values ΔB = B
exp

 - B
th

   and 
th

chchch rrr  exp , for several nuclei 

 

  ΔB = B
exp

 - B
th

     th

chchch rrr  exp  

Nuclei B
exp 

KDE0 KDE r
exp 

KDE0 KDE 
16

O 127.620 0.394 1.011 2.730 -0.041 -0.039 
24

O 168.384 -0.581 0.370    
34

Si 283.427 -0.656 0.060    
40

Ca 342.050 0.005 0.252      3.49 0.000 0.011 
48

Ca 415.990 0.188 1.165 3.480 -0.021 -0.008 
48

Ni 347.136 -1.437     -3.67    
56

Ni 483.991 1.091 1.106 3.750 -0.018 0.000 
68

Ni 590.408 0.169 0.539    
78

Ni 641.940 -0.252 0.763    
88

Sr 768.468 0.826 1.132 4.219 -0.002 0.019 
90

Zr 783.892     -0.127 -0.200 4.258 -0.008 0.013 
100

Sn 824.800     -3.664 -4.928    
132

Sn  1102.850     -0.422 -0.314    
208

Pb  1636.430      0.945 -0.338 5.500 0.011 0.041 

 

 



Recently, 

M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J. R. Stone, 

and P. D. Stevenson, Phys. Rev. C 85, 035201 (2012); P. D. 

Stevenson, P. M. Goddard, J. R. Stone and M. Dutra, 

ArXiv:1210.1592,  

analyzed 240 Skyrme interaction parameter sets, published in 

the literature, for their ability to pass constraints relating to 

current experimental data. Requiring a good fit to: (i) properties 

of nuclear matter close to the saturation density, such as the 

incompressibility coefficient, density dependence of the 

symmetry energy and effective mass; (ii) properties of finite 

nuclei, such as binding energy, radii and fission barriers: and 

(iii) the observational data on neutron stars, in particular, the 

maximum mass of neutron stars, only the KDE0v1 interaction of 

passes the test. It is interesting to note that the data on neutron 

stars and fission barriers of nuclei were not included in the fit 

resulting with the parameters of the KDE0v1 interaction. 

 



KDE0v1



P. D. Stevenson, P. M. Goddard, J. R. Stone and M. Dutra, ArXiv:1210.1592, 



L = 0 L = 1 L = 2

Macroscopic picture of giant resonances



Hartree-Fock (HF) - Random Phase Approximation (RPA)                                                  

4. Carry out RPA calculations of strength function, transition density etc.

In fully self-consistent calculations:

1. Assume a form for the Skyrme parametrization (δ-type).

2. Carry out HF calculations for ground states and determine the Skyrme 

parameters by a fit to binding energies and radii.

3. Determine the residual p-h interaction 



Isoscalar strength functions of 208Pb 

for L =  0  - 3 multipolarities are 

displayed. The SC (full line) 

corresponds to the fully self-

consistent calculation where LS 

(dashed line) and CO (open circle) 

represent the calculations without 

the ph spin-orbit and Coulomb 

interaction in the RPA, respectively. 

The Skyrme interaction SGII [Phys. 

Lett. B 106, 379 (1981)] was used.



33.026.837.437.4J (MeV)

229215255272K (MeV)

13.813.614.413.96±0.3010-35

13.813.614.314.20-60208Pb

15.515.216.215.40±0.4010-35

15.515.316.216.10-60144Sm

16.616.417.315.85±0.2010-35

16.616.417.317.10-60116Sn

18.017.918.917.81±0.3010-35

18.017.918.918.70-6090Zr

KDE0SGIISK255NL3Expt.ω1-ω2Nucleus

Fully self-consistent HF-RPA results for ISGMR centroid energy (in MeV) with the 

Skyrme interaction SK255, SGII and KDE0 are compared with the RRPA results using 

the NL3 interaction. Note the corresponding values of the nuclear matter 

incompressibility, K, and the symmetry energy , J, coefficients. ω1-ω2 is the range of 

excitation energy. The experimental data are from TAMU.



S. Shlomo and A.I. Sanzhur, Phys. Rev. C 

65, 044310 (2002) 
ISGDR MYrrrf 1

23

3

5










SL1 interaction, K = 230 MeV, Eα = 240 MeV
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Reconstruction of the ISGDR EWSR 

in 116Sn from the inelastic α-particle 

cross sections. The middle panel: 

maximum double differential cross 

section obtained from ρt (RPA). The 

lower panel: maximum cross section 

obtained with ρcoll  (dashed line) and ρt  

(solid line) normalized to 100% of  the 

EWSR. Upper panel: The solid line 

(calculated using RPA) and the dashed 

line are the ratios of the middle panel 

curve with the solid and dashed lines 

of the lower panel, respectively.



HF based RPA calculations with 33 Skyrme interactions

We have carried out calculations of centroid energies, ECEN, of the isoscalar (T =

0) and isovector (T = 1) giant resonances of multipolarities L = 0-3 in 40,48Ca, 68Ni,

90Zr, 116Sn, 144Sm and 208Pb, within the fully self-consistent Hartree-Fock (HF)-

based random phase approximation (RPA) theory, using 33 different Skyrme-type

effective nucleon-nucleon interactions of standard form commonly adopted in the

literature. We also study the sensitivity of ECEN to physical properties of nuclear

matter (NM), such as the effective mass m*/m, nuclear matter incompressibility

coefficient KNM, enhancement coefficient κ of the energy weighted sum rule for

the isovector giant dipole resonance and symmetry energy at saturation density,

associated with the Skyrme interactions used in the calculations. We deduced

constraints for the values of the NM properties, by comparing the calculated

values of ECEN to experimental data.



Skyrme interactions

• 33 different Skyrme 

interactions 

• Cover wide range of nuclear 

matter properties



Pearson Linear Correlation 

Coefficient



Skyrme interactions

• 33 different Skyrme 

interactions 

• Cover wide range of 

nuclear matter properties



Pearson linear correlation cofficient between nuclear matter properties



Pearson liner correlation coefficient between GR energies and NM properties



Isoscalar Giant Monopole

KNM = 210 to 240 MeV



Isoscalar Giant Quadrupole

m*/m = 0.70 to 0.90



• Calculated Centroid energies (circles)

• Experimental data (dotted lines)

• Strong correlation with the 

enhancement factor κ (C~0.84)

• κ =0.25-0.70

Isovector Giant Dipole



• Calculated Centroid energies (circles)

• Experimental data (dotted lines)

• No correlation with J!

Isovector Giant Dipole



Centroid energy [MeV] plotted against the mass A of each nucleus. 

- Theoretical calculations shown as dots connected by lines to guide the 
eye.
- Experimental error bars shown as solid vertical lines.

Ecen 

m*/m

KNM

40,48Ca, 68Ni, 90Zr, 116Sn, 144Sm and 208Pb: centroid energies



Centroid energy [MeV] plotted against the mass A of each nucleus. 

- Theoretical calculations shown as dots connected by lines to guide the 
eye.
- Experimental error bars shown as solid vertical lines.

Ecen 

κ

Bonasera et al., PRC (2018, accepted for publication)

40,48Ca, 68Ni, 90Zr, 116Sn, 144Sm and 208Pb: centroid energies





Conclusions
1) We have developed a new EDFs based on Skyrme type interaction (KDE0,  

KDE0v1,... ) applicable to properties of rare nuclei and neutron stars. 

2) Considering the calculated HF-based RPA results for the ECEN for the ISGMR, ISGQR, and 

IVGDR of 40,48Ca, 68Ni, 90Zr, 116Sn, 144Sm and 208Pb, carried out with commonly used 33 

Skyrme interactions, we obtained good agreement with the experimental data for some 

interactions. Comparing the calculated ECEN to the experimental results we find that:

• Strong correlations exist between the calculated centroid energies ECEN of the isoscalar 

giant monopole resonance (ISGMR) and the nuclear matter (NM) incompressibility 

coefficient, KNM, leading to the value of KNM = 210 to 240 MeV. 

• Strong correlations exist between the centroid energy of the isoscalar giant quadrupole 

resonance (ISGQR) and the effective mass, leading to an accepted value for the NM 

effective mass in the range of m*/m = 0.70 to 0.90. 



• Strong correlations exist between the energy of the isovector giant dipole 

resonance (IVGDR) and the enhancement coefficient κ for the EWSR, leading 

to an accepted value in the range of κ = 0.25 to 0.70.

• No correlations exist between the centroid energy ECEN of the IVGDR and the 

symmetry energy coefficient J, or its first derivative L and its second 

derivative Ksym, associated with the density dependence of the symmetry 

energy. These results, which contradict statements in the literature, can be 

understood by noting that the value of ECEN of the IVGDR also depends on 

other NM quantities, such as m*/m, which have different values for the 

different interactions used in the calculations. 

• We note that these constraints on the values of KNM, m*/m and κ can be used, 

together with additional data on neutron rich and proton rich nuclei, for further 

improvement in determining a modern energy density functional.



Acknowledgments

Work done with: 

B. K. Agrawal

M. Anders

G. Bonasera

Supported by:

Grant number: DOE-FG03-93ER40773 


